您好,欢迎访问广东省农业科学院 机构知识库!

Natural Variations in SLG7 Regulate Grain Shape in Rice

文献类型: 外文期刊

作者: Zhou, Yong 1 ; Miao, Jun 1 ; Gu, Haiyong; Peng, Xiurong 1 ; Leburu, Mamotshewa 1 ; Yuan, Fuhai 1 ; Gu, Houwen 1 ; Gao, 1 ;

作者机构: 1.Yangzhou Univ, Minist Educ, Jiangsu Key Lab Crop Genet & Physiol, Coinnovat Ctr Modern Prod Technol Grain Crops,Key, Yangzhou 225009, Jiangsu, Peoples R China

2.Yangzhou Univ, Minist Educ, Jiangsu Key Lab Crop Genet & Physiol

关键词: rice;quantitative trait loci;grain shape;cell elongation

期刊名称:GENETICS ( 影响因子:4.562; 五年影响因子:4.845 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Rice (Oryza sativa) grain shape, which is controlled by quantitative trait loci (QTL), has a strong effect on yield production and quality. However, the molecular basis for grain development remains largely unknown. In this study, we identified a novel QTL, Slender grain on chromosome 7 (SLG7), that is responsible for grain shape, using backcross introgression lines derived from 9311 and Azucena. The SLG7 allele from Azucena produces longer and thinner grains, although it has no influence on grain weight and yield production. SLG7 encodes a protein homologous to LONGIFOLIA 1 and LONGIFOLIA 2, both of which increase organ length in Arabidopsis. SLG7 is constitutively expressed in various tissues in rice, and the SLG7 protein is located in plasma membrane. Morphological and cellular analyses suggested that SLG7 produces slender grains by longitudinally increasing cell length, while transversely decreasing cell width, which is independent from cell division. Our findings show that the functions of SLG7 family members are conserved across monocots and dicots and that the SLG7 allele could be applied in breeding to modify rice grain appearance.

  • 相关文献

[1]Identification of quantitative trait loci for phosphorus use efficiency traits in rice using a high density SNP map. Wang, Kai,Cui, Kehui,Liu, Guoling,Xie, Weibo,Yu, Huihui,Huang, Jianliang,Nie, Lixiao,Shah, Farooq,Peng, Shaobing,Wang, Kai,Cui, Kehui,Liu, Guoling,Pan, Junfeng,Huang, Jianliang,Nie, Lixiao,Shah, Farooq,Peng, Shaobing,Pan, Junfeng,Shah, Farooq. 2014

[2]ESTABLISHMENT AND APPLICATION OF A SET OFBLAST IN RICE. Li Xiaofang,Luo Wenyong,Xiao Xin,Mao Xingxue,Liu Yanzhuo. 2001

[3]Disruption of Secondary Wall Cellulose Biosynthesis Alters Cadmium Translocation and Tolerance in Rice Plants. Song, Xue-Qin,Liu, Li-Feng,Zhang, Bao-Cai,Gao, Ya-Ping,Liu, Xiang-Ling,Zhou, Yi-Hua,Jiang, Yi-Jun,Lin, Qing-Shan,Ling, Hong-Qing. 2013

[4]SWATH-MS Quantitative Analysis of Proteins in the Rice Inferior and Superior Spikelets during Grain Filling. Zhu, Fu-Yuan,Xu, Xuezhong,Peng, Xinxiang,Zhu, Guohui,Zhu, Fu-Yuan,Chen, Mo-Xian,Ye, Neng-Hui,Liu, Tie-Yuan,Li, Hao-Xuan,Wang, Guan-Qun,Jin, Yu,Zhang, Jianhua,Zhu, Fu-Yuan,Ye, Neng-Hui,Zhang, Jianhua,Su, Yu-Wen,Cao, Yun-Ying,Lin, Sheng,Gu, Yong-Hai,Chan, Wai-Lung,Lo, Clive. 2016

[5]Genetic analysis and pyramiding of two gall midge resistance genes (Gm-2 and Gm-6t) in rice (Oryza sativa L.). Katiyar, S,Verulkar, S,Chandel, G,Zhang, Y,Huang, B,Bennett, J. 2001

[6]Improving nitrogen fertilization in rice by site-specific N management. A review. Peng, Shaobing,Buresh, Roland J.,Dobermann, Achim,Huang, Jianliang,Cui, Kehui,Zhong, Xuhua,Zou, Yingbin,Tang, Qiyuan,Yang, Jianchang,Wang, Guanghuo,Liu, Yuanying,Hu, Ruifa,Zhang, Fusuo. 2010

[7]Quantifying the interactive effect of leaf nitrogen and leaf area on tillering of rice. Zhong, XH,Peng, SB,Sanico, AL,Liu, HX. 2003

[8]OsEF3, a homologous gene of Arabidopsis ELF3, has pleiotropic effects in rice. Fu, C.,Yang, X. O.,Chen, W.,Ma, Y.,Hu, J.,Li, S.,Fu, C.,Yang, X. O.,Chen, W.,Ma, Y.,Hu, J.,Li, S.,Fu, C.,Chen, X.. 2009

[9]Development of elite restoring lines by integrating blast resistance and low amylose content using MAS. Xiao Wu-ming,Peng Xin,Luo Li-xin,Liang Ke-qin,Wang Jia-feng,Huang Ming,Liu Yong-zhu,Guo Tao,Luo Wen-long,Wang Hui,Chen Zhi-qiang,Yang Qi-yun,Zhu Xiao-yuan. 2018

[10]Farmer participatory testing of standard and modified site-specific nitrogen management for irrigated rice in China. Hu, Ruifa,Cao, Jianmin,Huang, Jikun,Peng, Shaobing,Huang, Jianliang,Zhong, Xuhua,Zou, Yingbin,Yang, Jianchang,Buresh, Roland J.. 2007

[11]Development and evaluation of multi-genotype varieties of rice derived from MAGIC lines. Li, Xiao-Fang,Liu, Zhi-Xia,Lu, Dong-Bo,Liu, Yan-Zhuo,Mao, Xing-Xue,Li, Xiao-Fang,Li, Zhi-Xin,Li, Xiao-Fang,Li, Hua-Jun. 2013

[12]A novel functional gene associated with cold tolerance at the seedling stage in rice. Zhao, Junliang,Zhang, Shaohong,Dong, Jingfang,Yang, Tifeng,Mao, Xingxue,Liu, Qing,Wang, Xiaofei,Liu, Bin,Zhao, Junliang,Zhang, Shaohong,Dong, Jingfang,Yang, Tifeng,Mao, Xingxue,Liu, Qing,Wang, Xiaofei,Liu, Bin. 2017

[13]Effect of Environment and Genetic Recombination on Subspecies and Economic Trait Differentiation in the F-2 and F-3 Generations from indica-japonica Hybridization. Wang He-tong,Jin Feng,Xu Hai,Cheng Ling,Xia Ying-jun,Liu Chun-xiang,Chen Wen-fu,Xu Zheng-jin,Jiang Yi-jun,Lin Qing-shan. 2014

[14]Integrating Small RNA Sequencing with QTL Mapping for Identification of miRNAs and Their Target Genes Associated with Heat Tolerance at the Flowering Stage in Rice. Liu, Qing,Yang, Tifeng,Zhang, Shaohong,Mao, Xingxue,Zhao, Junliang,Wang, Xiaofei,Dong, Jingfang,Liu, Bin,Liu, Qing,Yang, Tifeng,Zhang, Shaohong,Mao, Xingxue,Zhao, Junliang,Wang, Xiaofei,Dong, Jingfang,Liu, Bin,Yu, Ting. 2017

[15]Heavy metal contaminations in soil-rice system: source identification in relation to a sulfur-rich coal burning power plant in Northern Guangdong Province, China. Wang, Xiangqin,Liu Chuanping,Li, Fangbai,Xu, Xianghua,Lv, Yahui,Zeng, Xiaoduo.

[16]Substitution mapping of QTLs for blast resistance with SSSLs in rice (Oryza sativa L.). Zhang, Yuexiong,Shan, Zelin,Qiao, Weihua,Xie, Qingjun,Zhu, Haitao,Zhang, Zemin,Zeng, Ruizhen,Ding, Xiaohua,Zhang, Guiquan,Yang, Jianyuan,Chen, Shen,Zhu, Haitao,Zhang, Zemin,Zeng, Ruizhen,Zhang, Guiquan. 2012

[17]Design and test of operation parameters for rice air broadcasting by unmanned aerial vehicle. Li Jiyu,Lan Yubin,Zhou Zhiyan,Zeng Shan,Huang Cong,Yao Weixiang,Li Jiyu,Lan Yubin,Zhou Zhiyan,Zeng Shan,Huang Cong,Yao Weixiang,Zhang Yang,Zhu Qiuyang. 2016

[18]SPECIATION OF ARSENIC IN RICE BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY-HYDRIDE GENERATION-ATOMIC FLUORESCENCE SPECTROMETRY WITH MICROWAVE-ASSISTED EXTRACTION. Dai, Shouhui,Wang, Min,Mao, Xuefei,Huang, Yatao,Yang, Hui,Dai, Shouhui,Wang, Min,Mao, Xuefei,Huang, Yatao,Yang, Hui,Wang, Fuhua,Yang, Hui,Wang, Fuhua. 2014

[19]A large-scale field study of transgene flow from cultivated rice (Oryza sativa) to common wild rice (O-rufipogon) and barnyard grass (Echinochloa crusgalli). Yuan, Qian-Hua,Shi, Lei,Qian, Qian,Liu, Wu-Ge,Kuang, Ba-Geng,Zeng, Da-Li,Liao, Yi-Long,Cao, Bin,Jia, Shi-Rong. 2006

[20]The alleviation of acid soil stress in rice by inorganic or organic ameliorants is associated with changes in soil enzyme activity and microbial community composition. Liang, Guoqing,Sun, Jingwen,He, Ping,Zhou, Wei,Wang, Xiubin,He, Ping,Tang, Shuanhu,Yang, Shaohai.

作者其他论文 更多>>