您好,欢迎访问江苏省农业科学院 机构知识库!

Temperature and moisture responses to carbon mineralization in the biochar-amended saline soil

文献类型: 外文期刊

作者: Sun, Junna 1 ; He, Fuhong 2 ; Zhang, Zhenhua 2 ; Shao, Hongbo 3 ; Xu, Gang 4 ;

作者机构: 1.Ludong Univ, Sch Life Sci, Yantai 264025, Peoples R China

2.Ludong Univ, Inst Geog & Planning, Yantai 264025, Peoples R China

3.Jiangsu Acad Agr Sci, Inst Agrobiotechnol, Nanjing 210014, Jiangsu, Peoples R China

4.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Yantai 264003, Peoples R China

关键词: Carbon mineralization;Biochar;Temperature;Soil moisture;Saline soil

期刊名称:SCIENCE OF THE TOTAL ENVIRONMENT ( 影响因子:7.963; 五年影响因子:7.842 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: This study assessed the effects of temperature and moisture on carbon mineralization (C-min) in a saline soil system with biochar amendment. The dynamics of Cmin were monitored in a biochar-amended saline soil for 220 days by incubation experiments under different conditions of temperature (15 degrees C, 25 degrees C and 35 degrees C) and moisture (30%, 70% and 105% of the water-holding capacity). Results showed that as the incubation temperature rose, cumulative Cmin consistently increased in soil added with 0-4% biochar. The two-compartment model could well describe the dynamics of Cmin. The temperature rise increased the concentration of labile C in soil, but reduced the turnover time of labile and recalcitrant C pools and the value of temperature coefficient Q(10). The response of Cmin to moisture was varying in soil amended with different levels of biochar. In the control treatment (soil alone), cumulative Cmin increased only when soil moisture was >105%. In the biochar treatments, however, 70% of water holding capacity was optimal for Cmin, except for 2%-biochar treatment at 35 degrees C. The findings highlight the necessity to consider the combined effects of soil moisture, temperature and the amount of biochar added for assessing Cmin in biochar-amended saline soils. (C) 2016 Elsevier B.V. All rights reserved.

  • 相关文献

[1]Effects of biochar application on Suaeda salsa growth and saline soil properties. Sun, Junna,He, Fuhong,Zhang, Zhenhua,Shao, Hongbo,Shao, Hongbo,Xu, Gang. 2016

[2]Moisture Effect on Soil Humus Characteristics in a Laboratory Incubation Experiment. Li, Cuilan,Gao, Shuqing,Zhang, Jinjing,Zhao, Lanpo,Li, Cuilan,Gao, Shuqing,Zhang, Jinjing,Zhao, Lanpo.

[3]Spatial distribution of biological soil crusts on the slope of the Chinese Loess Plateau based on canonical correspondence analysis. Bu, Chong-feng,Zhang, Peng,Wang, Chun,Bu, Chong-feng,Yang, Yong-sheng,Bu, Chong-feng,Yang, Yong-sheng,Wu, Shu-fang,Shao, Hong-bo,Shao, Hong-bo.

[4]Controlled-release fertilizer, floating duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from rice paddy fields irrigated with nitrogen-rich wastewater. Sun, Haijun,Sun, Haijun,Min, Ju,Feng, Yanfang,Shi, Weiming,Zhang, Hailin,Feng, Yanfang.

[5]Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic. Wang, Ning,Chang, Zhi-Zhou,Xue, Xi-Mei,Juhasz, Albert L.,Li, Hong-Bo.

[6]Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil. Feng, Yanfang,Xue, Lihong,Gao, Qian,Yang, Linzhang,Feng, Yanfang,Sun, Haijun,Sun, Haijun,Liu, Yang,Lu, Kouping.

[7]Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Xu, Gang,Zhang, You,Sun, Junna,Shao, Hongbo,Shao, Hongbo,Sun, Junna,Zhang, You.

[8]Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars. Pan, Ligang,Yu, Xiangyang,Ying, Guangguo,Kookana, Rai S.,Ying, Guangguo,Pan, Ligang.

[9]Suppression of Chlorantraniliprole Sorption on Biochar in Soil-Biochar Systems. Wang, Ting-Ting,Lu, Meng-Xiao,Liu, Xian-Jin,Yu, Xiang-Yang,Li, Yi-Song,Jiang, Alice C..

[10]The effect of periphyton on seed germination and seedling growth of rice (Oryza sativa) in paddy area. Lu, Haiying,Liu, Junzhuo,Wu, Yonghong,Lu, Haiying,Shao, Hongbo,Kerr, Philip G..

[11]Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils. Yu, Xiang-Yang,Mu, Chang-Li,Liu, Xian-Jin,Gu, Cheng,Liu, Cun.

[12]Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and P-31 NMR analysis. Xu, Gang,Zhang, You,Shao, Hongbo,Sun, Junna,Shao, Hongbo,Sun, Junna,Zhang, You.

[13]Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation. Jin, Hongmei,Chang, Zhizhou,Xu, Yueding,Zhang, Jianying,Jin, Hongmei,Chang, Zhizhou,Xu, Yueding,Zhang, Jianying,Jin, Hongmei,Capareda, Sergio,Gao, Jun.

[14]Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Sun, Haijun,Chu, Lei,Lu, Haiying,Shao, Hongbo,Shi, Weiming.

[15]Bioremediation of Wastewater by Iron Oxide-Biochar Nanocomposites Loaded with Photosynthetic Bacteria. He, Shiying,Duan, Jingjing,Feng, Yanfang,Yang, Bei,Yang, Linzhang,Zhong, Linghao. 2017

[16]Biochar characteristics produced from rice husks and their sorption properties for the acetanilide herbicide metolachlor. Huang, Yufen,Li, Yanliang,Huang, Lianxi,Huang, Qing,Liu, Zhongzhen,Wei, Lan,Huang, Yufen,Li, Yanliang,Huang, Lianxi,Huang, Qing,Liu, Zhongzhen,Mar, Nyo Nyo.

[17]FIRST CHARACTERIZATION OF HUMIC-LIKE SUBSTANCES ISOLATED FROM MAIZE STRAW BIOCHAR. Zhang, Chang,Cai, Hongguang,Zhang, Chang,Ren, Jun,Wang, Lichun.

[18]Postharvest changes in physicochemical characteristics and free amino acids content of immature vegetable soya bean (Glycine max L.) grains. Song, Jiangfeng,Liu, Chunquan,Li, Dajing,Song, Jiangfeng,Gu, Zhenxin.

[19]The effect of fibrolytic enzyme, Lactobacillus plantarum and two food antioxidants on the fermentation quality, alpha-tocopherol and beta-carotene of high moisture napier grass silage ensiled at different temperatures. Liu, Q. H.,Shao, T.,Bai, Y. F..

[20]Seed Germination Ecology of Catchweed Bedstraw (Galium aparine). Wang, Hongchun,Lou, Yuanlai,Zhang, Bing,Dong, Liyao.

作者其他论文 更多>>