您好,欢迎访问江苏省农业科学院 机构知识库!

Transcriptome and digital gene expression analysis of herbaceous peony (Paeonia lactiflora Pall.) to screen thermo-tolerant related differently expressed genes

文献类型: 外文期刊

作者: Hao, Zhaojun 1 ; Wei, Mengran 2 ; Gong, Saijie 2 ; Zhao, Daqiu 2 ; Tao, Jun 1 ;

作者机构: 1.Yangzhou Univ, Coll Anim Sci & Technol, Yangzhou 225009, Jiangsu, Peoples R China

2.Yangzhou Univ, Coll Hort & Plant Protect, Key Lab Crop Genet & Physiol, Yangzhou 225009, Jiangsu, Peoples R China

3.Jiangsu Key Lab Hort Crop Genet Improvement, Nanjing 210014, Jiangsu, Peoples R China

关键词: Transcriptome;RNA-seq;Heat stress;Herbaceous peony

期刊名称:GENES & GENOMICS ( 影响因子:1.839; 五年影响因子:1.329 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Herbaceous peony (Paeonia lactiflora Pall.) is easily injured by heat stress (HS), which greatly restricts its application and promotion. In this study, the thermo-tolerance of three representative P. lactiflora cultivars had been firstly assessed. 'Zifengyu' was identified as the thermo-tolerant cultivar with relatively lower values and smaller variations in malondialdehyde, hydrogen peroxide (H2O2) and proline contents under HS. Subsequently, their transcriptomes were sequenced by RNA sequencing (RNA-seq) technology to construct a complete database. 81,599 unigenes were obtained, and 34,940 unigenes had been annotated. Moreover, through digital gene expression analysis of thermo-tolerant 'Zifengyu' and moderately thermo-tolerant 'Hongyanzhenghui', 161 heat stress response genes had been screened involving heat shock protein genes, plant hormone signal transduction related genes, fatty acid synthesis genes, reactive oxygen species-scavenging genes and secondary metabolites related genes. And the effectively and timely response of these genes to HS could endow thermo-tolerance to 'Zifengyu'. Among these genes, 11 key thermo-tolerant related genes whose expressions were all significantly up-regulated in 'Zifengyu' and 'Hongyanzhenghui' during development and the former possessed higher levels could be regarded as the candidate genes, including isoprene synthase gene, 2 peroxidase genes, 3-oxoacyl-acyl carrier protein reductase gene (FabG), 3 transcription factor genes (bHLH, NAC and WRKY), HSP20 and 3 HSP70. These results could provide a better understanding of heat stress response in P. lactiflora, and pave for the breeding of thermo-tolerant cultivars.

  • 相关文献

[1]High throughput sequencing of herbaceous peony small RNAs to screen thermo-tolerance related microRNAs. Hao, Zhaojun,Liu, Ding,Hao, Zhaojun,Liu, Ding,Gong, Saijie,Zhao, Daqiu,Tao, Jun,Zhao, Daqiu,Tao, Jun.

[2]De novo transcriptome sequencing of pakchoi (Brassica rapa L. chinensis) reveals the key genes related to the response of heat stress. Xu, Hai,Song, Bo,Chen, Jinfeng,Xu, Hai,Chen, Longzheng,Song, Bo,Fan, Xiaoxue,Yuan, Xihan.

[3]Transcriptome sequencing and analysis of major genes involved in calcium signaling pathways in pear plants (Pyrus calleryana Decne.). Lin, Jing. 2015

[4]Transcriptome sequencing analysis of porcine granulosa cells treated with an anti-inhibin antibody. Lei, Mingming,Cai, Liuping,Li, Hui,Chen, Zhen,Shi, Zhendan. 2017

[5]Biochemical and molecular responses of herbaceous peony to high temperature stress. Wu, Yan-Qing,Zhao, Da-Qiu,Han, Chen-Xia,Tao, Jun,Zhao, Da-Qiu,Tao, Jun. 2016

[6]Shade Ameliorates High Temperature-induced Inhibition of Growth in Herbaceous Peony (Paeonia lactiflora). Zhao, Daqiu,Han, Chengxia,Zhou, Chunhua,Tao, Jun,Zhao, Daqiu. 2015

[7]Flavonoid content and expression analysis of flavonoid biosynthetic genes in herbaceous peony (Paeonia lactiflora Pall.) with double colors. Wu Yan-qing,Wei Meng-ran,Zhao Da-qiu,Tao Jun,Zhao Da-qiu,Tao Jun. 2016

[8]Anatomical and biochemical analysis reveal the role of anthocyanins in flower coloration of herbaceous peony. Zhao, Da-Qiu,Wei, Meng-Ran,Liu, Ding,Tao, Jun,Zhao, Da-Qiu,Wei, Meng-Ran,Liu, Ding,Tao, Jun.

[9]痛风雏鹅肾组织损伤的RNA-seq分析. 邵春荣,黄远丕,黄运茂,应诗家,奚雨萌,施振旦. 2020

[10]基于RNA-seq的两种柳树转录组微卫星特征比较分析. 郑纪伟,周洁,王保松,何旭东. 2019

[11]玉米Glyco-hydro-16糖苷酶家族全基因组的鉴定及其遗传分化. 林峰,葛敏,周玲,赵涵. 2016

[12]热应激下公兔睾丸组织形态和精液转录组分析. 蔡佳炜,张琛,靳荣帅,鲍志远,张希宇,王璠,翟频,赵博昊,陈阳,汤先伟,吴信生. 2023

[13]利用RNA-seq技术分析淹水胁迫下转BnERF拟南芥差异表达基因. 吕艳艳,付三雄,陈松,张唯,戚存扣. 2015

[14]基于海甘蓝RNA-Seq序列开发EST-SSR分子标记. 戚维聪,程计华,黄邦全,李坦,林峰. 2014

[15]Effects of dietary betaine supplementation subjected to heat stress on milk performances and physiology indices in dairy cow. Zhang, L.,An, W. J.,Lian, H.,Zhou, G. B.,Han, Z. Y.,Ying, S. J.. 2014

[16]Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. Zhou, Rong,Zhao, Liping,Wang, Yinlei,Yu, Wengui,Zhao, Tongmin,Zhou, Rong,Zhao, Liping,Wang, Yinlei,Yu, Wengui,Zhao, Tongmin,Zhou, Rong,Yu, Xiaqing,Wu, Zhen,Ottosen, Carl-Otto,Rosenqvist, Eva. 2017

[17]Genome-wide analysis of the CaHsp20 gene family in pepper: comprehensive sequence and expression profile analysis under heat stress. Guo, Meng,Liu, Jin-Hong,Lu, Jin-Ping,Zhai, Yu-Fei,Wang, Hu,Gong, Zhen-Hui,Lu, Ming-Hui,Wang, Shu-Bin. 2015

[18]Overexpression of Arabidopsis P3B increases heat and low temperature stress tolerance in transgenic sweetpotato. Ji, Chang Yoon,Jin, Rong,Kim, Ho Soo,Lee, Chan-Ju,Kang, Le,Kim, So-Eun,Kwak, Sang-Soo,Ji, Chang Yoon,Jin, Rong,Lee, Chan-Ju,Kang, Le,Kim, So-Eun,Kwak, Sang-Soo,Jin, Rong,Xu, Zhen,Xie, Yiping,Li, Hongmin,Ma, Daifu,Lee, Hyeong-Un,Lee, Joon Seol,Kang, Chang Ho,Chi, Yong Hun,Lee, Sang Yeol,Kang, Chang Ho,Chi, Yong Hun,Lee, Sang Yeol. 2017

[19]Protein sHSP26 improves chloroplast performance under heat stress by interacting with specific chloroplast proteins in maize (Zea mays). Hu, Xiuli,Yang, Yanfang,Gong, Fangping,Zhang, Li,Wu, Liuji,Li, Chaohao,Wang, Wei,Zhang, Dayong.

[20]Lipopolysaccharide and heat stress impair the estradiol biosynthesis in granulosa cells via increase of HSP70 and inhibition of smad3 phosphorylation and nuclear translocation. Li, Hui,Cai, Liuping,Shi, Zhendan,Guo, Shuangshuang,Ma, Weiming.

作者其他论文 更多>>