您好,欢迎访问江苏省农业科学院 机构知识库!

Shade Ameliorates High Temperature-induced Inhibition of Growth in Herbaceous Peony (Paeonia lactiflora)

文献类型: 外文期刊

作者: Zhao, Daqiu 1 ; Han, Chengxia 1 ; Zhou, Chunhua 1 ; Tao, Jun 1 ;

作者机构: 1.Yangzhou Univ, Coll Hort & Plant Protect, Key Lab Crop Genet & Physiol Jiangsu Prov, Yangzhou 225009, Peoples R China

2.Jiangsu Key Lab Hort Crop Genet Improvement, Nanjing 210014, Jiangsu, Peoples R China

关键词: Herbaceous peony;High temperature stress;Heat shock protein;Thermal damage

期刊名称:INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY ( 影响因子:0.822; 五年影响因子:0.906 )

ISSN: 1560-8530

年卷期: 2015 年 17 卷 5 期

页码:

收录情况: SCI

摘要: High temperature stress has a significant impact on plant growth and development. Herbaceous peony (Paeonia lactiflora Pall.) is a very important landscape plant used in greenbelt whose growth is restrained seriously by high summer temperature, but little is known about relevant solving measures. In order to find an effective measure, this paper studied the effect of black shading net with about 60% transmittance on alleviating the thermal damage of P. lactiflora under field conditions. The results showed that P. lactiflora physiological indices were higher in shaded plants than those in sun-exposured plants especially in the late stages of higher temperature, such as chlorophyll (Chl) a, Chl b, Chl a+b, soluble sugar, soluble protein contents; whereas the exception to the trend was in Chl a/b and malondialdehyde (MDA) content. Moreover, compared with sun exposure, shade increased P. lactiflora protective enzymes activities, made mesophyll cell ultrastructures more intact, the chloroplasts more round and the grana lamellaes arrange relatively neatly, which led to enhance its photosynthesis rate (Pn) and transpiration rate (Tr). Additionally, the full-length cDNA of a heat shock protein gene (HSP70) containing 2195 bp nucleotides was obtained from P. lactiflora, and the expression analysis of PlHSP60, PlHSP70 and PlHSP90 in four developmental stages showed that shade caused PlHSP60 and PlHSP70 expression levels to rise especially in the late stages. These results indicated that shade alleviated the thermal damage of high temperature stress to P. lactiflora through scavenging reactive oxygen species, protecting cell structures, enhancing photosynthesis and the expression levels of HSP under high temperature stress, which might lay a theoretical foundation for P. lactiflora safe over summering and cultivated form in summer. (C) 2015 Friends Science Publishers

  • 相关文献

[1]Biochemical and molecular responses of herbaceous peony to high temperature stress. Wu, Yan-Qing,Zhao, Da-Qiu,Han, Chen-Xia,Tao, Jun,Zhao, Da-Qiu,Tao, Jun. 2016

[2]Transcriptome and digital gene expression analysis of herbaceous peony (Paeonia lactiflora Pall.) to screen thermo-tolerant related differently expressed genes. Hao, Zhaojun,Tao, Jun,Hao, Zhaojun,Wei, Mengran,Gong, Saijie,Zhao, Daqiu,Tao, Jun,Zhao, Daqiu,Tao, Jun.

[3]Anatomical and biochemical analysis reveal the role of anthocyanins in flower coloration of herbaceous peony. Zhao, Da-Qiu,Wei, Meng-Ran,Liu, Ding,Tao, Jun,Zhao, Da-Qiu,Wei, Meng-Ran,Liu, Ding,Tao, Jun.

[4]High throughput sequencing of herbaceous peony small RNAs to screen thermo-tolerance related microRNAs. Hao, Zhaojun,Liu, Ding,Hao, Zhaojun,Liu, Ding,Gong, Saijie,Zhao, Daqiu,Tao, Jun,Zhao, Daqiu,Tao, Jun.

[5]Flavonoid content and expression analysis of flavonoid biosynthetic genes in herbaceous peony (Paeonia lactiflora Pall.) with double colors. Wu Yan-qing,Wei Meng-ran,Zhao Da-qiu,Tao Jun,Zhao Da-qiu,Tao Jun. 2016

[6]Prediction model of rice (Oryza sativa) yield under high temperature stress based on hyper-spectral remote sensing. Xie, X. J.,Shen, Sh H.,Li, Y. X.,Li, B. B..

[7]Protein sHSP26 improves chloroplast performance under heat stress by interacting with specific chloroplast proteins in maize (Zea mays). Hu, Xiuli,Yang, Yanfang,Gong, Fangping,Zhang, Li,Wu, Liuji,Li, Chaohao,Wang, Wei,Zhang, Dayong.

[8]Interaction of heat shock protein 90 B1 (Hsp90B1) with liposome reveals its potential role in protection the integrity of lipid membranes. Li, Pengpeng,Zhang, Muhan,Zou, Ye,Sun, Zhilan,Sun, Chong,Geng, Zhiming,Xu, Weimin,Wang, Daoying. 2018

作者其他论文 更多>>