您好,欢迎访问上海市农业科学院 机构知识库!

Soil salinity increases the tolerance of excessive sulfur fumigation stress in tomato plants

文献类型: 外文期刊

作者: Jiang, Yuping 4 ; Ding, Xiaotao 1 ; Zhang, Dong 3 ; Deng, Qi 2 ; Yu, Chih-Li 2 ; Zhou, Suping 4 ; Hu, Dafeng, I 2 ;

作者机构: 1.Shanghai Acad Agr Sci, Shanghai Key Lab Protected Hort Technol, Shanghai 201106, Peoples R China

2.Tennessee State Univ, Dept Biol Sci, Nashville, TN 37209 USA

3.Jiangsu Acad Agr Sci, Xuzhou Inst Agr Sci, Xuzhou 221121, Peoples R China

4.Tennessee State Univ, Dept Agr & Environm Sci, Nashville, TN 37209 USA

关键词: Sulfur fumigation stress;Salt stress;Cross-tolerance;Tomato;Chlorophyll fluorescence

期刊名称:ENVIRONMENTAL AND EXPERIMENTAL BOTANY ( 影响因子:5.545; 五年影响因子:5.99 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: To investigate the responses of plant photosynthesis and chlorophyll fluorescence to excessive sulfur fumigation stress (Sulfur) alleviated by pre-treated salt in the soil (Salt), seedlings of a tomato cultivar (Solanum lycopersicum L. 'Money Maker') were exposed to the Sulfur with or without the Salt treatment for 15 h. Leaf fresh weight, dry weight, chlorophyll (Chl) content, carotenoid (Car) content, photosynthesis and chlorophyll fluorescence parameters were measured. The results showed that the Sulfur treatment significantly decreased leaf fresh weight, dry weight, Chl and Car contents, net photosynthetic rate (P-n), stomatal conductance (G(s)), transpiration rate (T-r), maximum quantum efficiency of photosystem II (PSII) photochemistry. (F-v/F-m), actual photochemical efficiency of PSII (Phi(PSII)), photochemical quenching coefficient (qP), electron transport rate (ETR), and the effective quantum yield of PSII photochemistry (F-v/F-m). In addition, the Sulfur treatment significantly increased intercellular CO2 concentration (C-i) and non-photochemical quenching coefficients (qN). Plants in soil pre-treated with salt clearly experienced less damage from sulfur toxicity, and these plants were able to retain higher leaf mass per area, greater total Chl and Car contents and photosynthetic activities, and to maintain the integrity of their chlorophyll fluorescence systems than fumigated plants growing in soil that was not pre-treated. Reduced leaf photosynthesis in the Sulfur treatment was due to non-stomatal limitation, and to disturbance of the chlorophyll fluorescence system which needs more energy consumption for thermal dissipation. Our results showed that a cross-tolerance exists between the salt stress and extreme sulfur fumigation stress, and plants pre-treated with salt provided some protection against excessive sulfur toxicity. (C) 2016 Elsevier B.V. All rights reserved.

  • 相关文献

[1]Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters and antioxidative system in seedlings of eggplant (Solanum melongena L.) under salinity stress. Wu, Xuexia,Zhu, Zongwen,Li, Xian,Zha, Dingshi. 2012

[2]Root cultures for elucidating tomato root reactions to NaCl stress. K. Kouki,A. Mougou,R. Paul. 2001

[3]Brassinosteroids protect photosynthesis and antioxidant system of eggplant seedlings from high-temperature stress. Wu, Xuexia,Zhu, Zongwen,Zhang, Hui,Yao, Xinfeng,Chen, Jianlin,Zha, Dingshi.

[4]Foliar application of 24-epibrassinolide alleviates high-temperature-induced inhibition of photosynthesis in seedlings of two melon cultivars. Zhang, Y. P.,Yang, S. J.,Chen, Y. Y.,Zhang, Y. P.,Ding, H. D.,Yang, S. J.,Chen, Y. Y.,Zhu, X. H.. 2013

[5]Heat stress protection in Aspen sp1 transgenic Arabidopsis thaliana. Zhu, Bo,Xu, Jing,Zhou, Jun,Xu, Jin-Tao,Hou, Xi-Lin,Zhu, Bo,Xiong, Ai-Sheng,Peng, Ri-He,Xu, Jing,Zhou, Jun,Xu, Jin-Tao,Jin, Xiao-Fen,Zhang, Yang,Yao, Quan-Hong,Jin, Xiao-Fen,Zhang, Yang.

[6]Heat shock factors in tomatoes: genome-wide identification, phylogenetic analysis and expression profiling under development and heat stress. Yang, Xuedong,Zhu, Weimin,Zhang, Hui,Liu, Na,Tian, Shoubo. 2016

[7]Different effects on ACC oxidase gene silencing triggered by RNA interference in transgenic tomato. Xiong, AS,Yao, QH,Peng, RH,Li, X,Han, PL,Fan, HQ. 2005

[8]Molecular characterization and infectivity of Papaya leaf curl China virus infecting tomato in China. Zhang, Hui,Ma, Xin-ying,Qian, Ya-juan,Zhou, Xue-ping,Zhang, Hui. 2010

[9]Genome-Wide Identification and Analysis of the MYB Transcription Factor Superfamily in Solanum lycopersicum. Li, Zhenjun,Peng, Rihe,Tian, Yongsheng,Han, Hongjuan,Xu, Jing,Yao, Quanhong.

[10]Enhanced Tolerance to Chilling Stress in Tomato by Overexpression of a Mitogen-Activated Protein Kinase, SlMPK7. Yu, Li,Yan, Jun,He, Lizhong,Zhu, Weimin,Yang, Yanjuan.

[11]Infectivity of Tomato Leaf Curl Hainan Virus in Tomato and Tobacco in China. Zhang, Hui,Tian, Shoubo,Wu, Xuexia,Liu, Longzhou,Liu, Na,Zhu, Weimin. 2012

[12]Overexpression of tomato mitogen-activated protein kinase SlMPK3 in tobacco increases tolerance to low temperature stress. Yu, Li,Yan, Jun,Zhu, Weimin,Yang, Yanjuan.

[13]Transcriptome analysis reveals translational regulation in barley microspore-derived embryogenic callus under salt stress. Liu, Cheng-hong,Lu, Rui-ju,Guo, Gui-mei,He, Ting,Li, Ying-bo,Xu, Hong-wei,Gao, Run-hong,Chen, Zhi-wei,Huang, Jian-hua,Liu, Cheng-hong,Lu, Rui-ju,Guo, Gui-mei,He, Ting,Li, Ying-bo,Xu, Hong-wei,Gao, Run-hong,Chen, Zhi-wei,Huang, Jian-hua.

[14]MicroRNA and target gene responses to salt stress in grafted cucumber seedlings. Li, Yansu,Li, Chaohan,Bai, Longqiang,He, Chaoxing,Yu, Xianchang,Li, Chaohan. 2016

[15]Alleviation of exogenous 6-benzyladenine on two genotypes of eggplant (Solanum melongena Mill.) growth under salt stress. Wu, Xuexia,Chen, Jianlin,Yang, Shaojun,Zha, Dingshi,Wu, Xuexia,Chen, Jianlin,Yang, Shaojun,Zha, Dingshi,He, Jie. 2014

[16]Attenuation of salt-induced changes in photosynthesis by exogenous nitric oxide in tomato (Lycopersicon esculentum Mill. L.) seedlings. Wu, Xue-Xia,Ding, Hai-Dong,Zhu, Wei-Min,Chen, Jian-Lin,Zhu, Wei-Min,Zhang, Hong-Juan. 2010

作者其他论文 更多>>