您好,欢迎访问江苏省农业科学院 机构知识库!

Genome-Wide Discovery of Tissue-Specific Genes in Maize

文献类型: 外文期刊

作者: Lin, Feng 1 ; Bao, Huabin 1 ; Yang, Jun 3 ; Liu, Yuhe 4 ; Dai, Huixue 5 ; Zhao, Han 1 ;

作者机构: 1.Jiangsu Acad Agr Sci, Inst Biotechnol, Prov Key Lab Agrobiol, Nanjing, Jiangsu, Peoples R China

2.Nanjing Agr Univ, Nanjing, Jiangsu, Peoples R China

3.Chinese Acad Sci, Shanghai Inst Plant Physiol & Ecol, Shanghai Inst Biol Sci, Natl Key Lab Plant Mol Genet, Shanghai, Peoples R China

4.Univ Illinois, Dept Crop Sci, Urbana, IL USA

5.Nanjing Inst Vegetable Sci, Nanjing, Jiangsu, Peoples R China

关键词: Maize;Transcriptome analysis;Tissue-specific expression;Promoter;Transgene

期刊名称:PLANT MOLECULAR BIOLOGY REPORTER ( 影响因子:1.595; 五年影响因子:2.042 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Analysis of spatial and temporal gene expression pattern is instrumental to elucidation of gene networks and molecular mechanisms of tissue development. It also holds great value to applied research by providing tissue-specific (TS) promoter candidates for transgenic studies. Here, we present a large-scale systematic discovery of tissue-specific genes in maize. Profiles of TS genes were generated from a maize transcriptome atlas, with 71, 539, 23, 352, 51, and 287 genes showing expression specificity in the root, leaf, cob, endosperm, silk, and anther. Functional annotations and enrichment analysis of these TS genes identified pathways overrepresented for each tissue. Tissue specificity was experimentally confirmed by RT-PCR, mRNA in situ hybridization, and transgenic expression of promoter-fluorescent proteins. Two significantly enriched binding motifs, CATTGYCG and KGGTATCA, were identified from the promoter analysis of the anther- and endosperm-specifically expressed genes. Further, co-expression analysis on a broader set of maize germplasms identified molecular networks of TS genes and revealed a number of novel transcripts including non-coding RNA expressing the same pattern with the TS genes from B73. Our global analysis of maize TS transcriptomes could shed light on the molecular mechanisms of tissue specificity and facilitate transgenic studies by providing a valuable resource of TS promoter candidates.

  • 相关文献

[1]玉米功台皂性Insertjon/Deletion(InDel)分子标记的挖掘及其在杂交种纯度鉴定中的应用. 张体付,葛敏,韦玉才,赵涵. 2012

[2]UFGT: The Key Enzyme Associated with the Petals Variegation in Japanese Apricot. Wu, Xinxin,Ni, Xiaopeng,Zhou, Yong,Gao, Zhihong,Wu, Xinxin,Gong, Qinghua. 2017

[3]Comparative transcriptome analysis of berry-sizing effects of gibberellin (GA(3)) on seedless Vitis vinifera L.. Wang, Xicheng,Zhao, Mizhen,Wu, Weimin,Qian, Yaming,Wang, Zhuangwei,Korir, Nicholas Kibet.

[4]A Novel Soybean Intrinsic Protein Gene, GmTIP2;3, Involved in Responding to Osmotic Stress. Zhang, Dayong,He, Xiaolan,Xu, Zhaolong,Xu, Ling,Wei, Peipei,Huang, Yihong,Brestic, Marian,Ma, Hongxiang,Shao, Hongbo,Tong, Jinfeng,Brestic, Marian,Shao, Hongbo. 2016

[5]Molecular cloning and analysis of a receptor-like promoter of Gbvdr3 gene in sea island cotton. Zhang, B. -J.,Chen, Q. -Z.,Tang, N.,Wang, L. -K.,Zhang, B. -J.,Zhang, H. -P.,Wang, R. -F.,Zhang, B. -L.. 2016

[6]Systematic discovery and characterization of stress-related microRNA genes in Oryza sativa. Xie, Kai Bin,Zhou, Xue,Zhang, Tian Hai,Chen, Guo Xiang,Zhou, Xue,Zhang, Bao Long,Chen, Li Ming.

[7]Isolation and characterization of Calcineurin B-like gene (PbCBL1) and its promoter in birch-leaf pear (Pyrus betulifolia Bunge). Xu, Y. Y.,Li, H.,Lin, J.,Li, X. G.,Chang, Y. H.. 2015

[8]Retinoid Regulation of the Zebrafish cyp26a1 Promoter. Hu, Ping,Bao, Jie,Gao, Xiang,Zhao, Qingshun,Tian, Miao,Gu, Xingxing,Xing, Guangdong,Linney, Elwood. 2008

[9]Silver nanoparticles deteriorate the mutual interaction between maize (Zea mays L.) and arbuscular mycorrhizal fungi: a soil microcosm study. Cao, Jiling,Feng, Youzhi,Lin, Xiangui,Cao, Jiling,Feng, Youzhi,Lin, Xiangui,Cao, Jiling,Feng, Youzhi,Lin, Xiangui,Cao, Jiling,He, Shiying. 2017

[10]Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response. Ge, Min,Jiang, Lu,Wang, Yuancong,Lv, Yuanda,Zhou, Ling,Liang, Shuaiqiang,Bao, Huabin,Zhao, Han,Liu, Yuhe. 2018

[11]The Difference of Physiological and Proteomic Changes in Maize Leaves Adaptation to Drought, Heat, and Combined Both Stresses. Zhao, Feiyun,Zhao, Yulong,Wang, Wei,Yang, Hao,Tai, Fuju,Li, Chaohai,Hu, Xiuli,Zhang, Dayong. 2016

[12]Effect of fermentation on the nutritive value of maize. Cui, Li,Li, Da-jing,Liu, Chun-quan,Cui, Li,Li, Da-jing,Liu, Chun-quan. 2012

[13]Phosphoproteomic analysis of the response of maize leaves to drought, heat and their combination stress. Hu, Xiuli,Wu, Liuji,Zhao, Feiyun,Li, Nana,Li, Chaohao,Wang, Wei,Zhang, Dayong,Zhu, Guohui. 2015

[14]Evaluation of the yield and nitrogen use efficiency of the dominant maize hybrids grown in North and Northeast China. Chen FanJun,Yuan LiXing,Mi GuoHua,Zhang FuSuo,Fang ZenGuo,Gao Qiang,Ye YouLiang,Jia LiangLiang. 2013

[15]Optimised sowing date enhances crop resilience towards size-asymmetric competition and reduces the yield difference between intercropped and sole maize. Li, Haipeng,Li, Xiaolin,Zhang, Chaochun,Zhang, Fusuo,Liu, Quanqing. 2018

[16]Dual transcriptome analysis reveals insights into the response to Rice black-streaked dwarf virus in maize. Zhou, Yu,Duan, Canxing,Hao, Zhuanfang,Li, Mingshun,Yong, Hongjun,Zhang, Degui,Zhang, Shihuang,Weng, Jianfeng,Li, Xinhai,Zhou, Yu,Xu, Zhennan,Wang, Zhenhua,Chen, Yanping,Meng, Qingchang,Wu, Jirong.

[17]Genome-wide identification of housekeeping genes in maize. Lin, Feng,Jiang, Lu,Lv, Yuanda,Zhao, Han,Liu, Yuhe,Dai, Huixue. 2014

[18]Genome-wide histone acetylation correlates with active transcription in maize. Zhang, Wei,Garcia, Nelson,Feng, Yaping,Messing, Joachim,Zhao, Han.

[19]Mechanisms for the relationships between water-use efficiency and carbon isotope composition and specific leaf area of maize (Zea mays L.) under water stress. Zhang, Congzhi,Zhang, Jiabao,Zhang, Hui,Zhao, Jinhua,Wu, Qicong,Zhao, Zhanhui,Cai, Taiyi,Zhang, Hui.

作者其他论文 更多>>