您好,欢迎访问吉林省农业科学院 机构知识库!

Nitrogen manipulation affects leaf senescence during late seed filling in soybean

文献类型: 外文期刊

作者: Islam, Md. Matiul 1 ; Ishibashi, Yushi 3 ; Nakagawa, Andressa C. S. 4 ; Tomita, Yuki 4 ; Zhao, Xin 5 ; Iwaya-Inoue, 1 ;

作者机构: 1.Kagoshima Univ, United Grad Sch Agr Sci, Kagoshima 8900065, Japan

2.Khulna Univ, Agrotechnol Discipline, Khulna 9208, Bangladesh

3.Kyushu Univ, Fac Agr, Fukuoka 8128581, Japan

4.Kyushu Univ, Grad Sch Bioresource & Bioenvironm Sci, Fukuoka 8128581, Japan

5.Jilin Acad Agr Sci, Natl Engn Res Ctr Soybean, Soybean Res Inst, Changchun 130033, Peoples R China

6.Saga Univ, Fac Agr, Saga 8408502, Japan

关键词: Autophagy;Nitrogen;Nitrogen remobilization;Senescence;Soybean

期刊名称:ACTA PHYSIOLOGIAE PLANTARUM ( 影响因子:2.354; 五年影响因子:2.711 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: It is known that soybean plants store nitrogen during vegetative growth stage, and then remobilize it to the seeds during seed filling. This nitrogen remobilization is assumed to induce leaf senescence. The objective of this study was to investigate whether the manipulation of nitrogen availability could affect leaf senescence during seed filling. Soybean variety Fukuyutaka was grown in the side-opened vinyl house in 2014 and 2015 in Saga University, Japan. The plants were sufficiently watered with the solution containing 100 mg L-1 nitrogen and other nutrients before starting the treatments. The nutrient solution with different nitrogen concentrations (5-800 mg L-1) was applied to the plants from R6 (full-seed) to R7 (physiological maturity) stages. Parallel to the progress of plant senescence after R6 stage, the leaf-SPAD value, leaf nitrogen and soluble protein contents decreased gradually in control plants (100 mg L-1 nitrogen); however, these parameters did not change in higher nitrogen concentration treatments, whereas decreased quickly in lower nitrogen treatments. Therefore, the leaves and stems in higher nitrogen treatments remained green even at harvest time when the whole plant senesced in control and lower nitrogen treatments. The relative expression of an autophagy gene, GmATG8c, which is associated with nitrogen remobilization, showed the lower the nitrogen availability the earlier the up-regulation. The present results revealed that the shortage of nitrogen could stimulate the leaf senescence, while increasing soil nitrogen availability could delay even stop the leaf senescence, indicating that the nitrogen availability could be a key regulating factor of monocarpic senescence in soybean.

  • 相关文献

[1]Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply. Cai, Hongguang,Chu, Qun,Yuan, Lixing,Liu, Jianchao,Chen, Xiaohui,Chen, Fanjun,Mi, Guohua,Zhang, Fusuo,Cai, Hongguang.

[2]Carbon and nitrogen pools in different aggregates of a Chinese Mollisol as influenced by long-term fertilization. Chen, Ying,Zhang, Xudong,He, Hongbo,Xie, Hongtu,Yan, Ying,Zhang, Xudong,Chen, Ying,Zhu, Ping,Ren, Jun,Wang, Lichun.

[3]Long-term fertilization effects on carbon and nitrogen in particle-size fractions of a Chinese Mollisol. Yan, Y.,He, H.,Zhang, X.,Chen, Y.,Xie, H.,Bai, Z.,Yan, Y.,Zhang, X.,Chen, Y.,Zhu, P.,Ren, J.,Wang, L.. 2012

[4]Fate of applied urea N-15 in a soil-maize system as affected by urease inhibitor and nitrification inhibitor. Zhang, L.,Wu, Z.,Jiang, Y.,Chen, L.,Song, Y.,Zhang, L.,Wang, L.,Xie, J.,Ma, X.. 2010

[5]Estimating nutrient uptake requirements for rice in China. Xu, Xinpeng,He, Ping,Zhao, Shicheng,Qiu, Shaojun,Zhou, Wei,Xie, Jiagui,Hou, Yunpeng,He, Ping,Pampolino, Mirasol F.,Johnston, Adrian M..

[6]Identification of QTLs for plant height, ear height and grain yield in maize (Zea mays L.) in response to nitrogen and phosphorus supply. Cai, Hongguang,Chu, Qun,Gu, Riliang,Yuan, Lixing,Liu, Jianchao,Chen, Fanjun,Mi, Guohua,Zhang, Fusuo,Cai, Hongguang,Zhang, Xiuzhi.

[7]Selection of soybean elite cultivars based on phenotypic and genomic characters related to lodging tolerance. Liu, Zhangxiong,Li, Huihui,Li, Yinghui,Qiu, Lijuan,Fan, Xuhong,Zheng, Yuhong,Wang, Shuming,Huang, Wen,Yang, Jiyu,Wen, Zixiang,Wang, Dechun.

[8]Phenotypic characterization and genetic dissection of nine agronomic traits in Tokachi nagaha and its derived cultivars in soybean (Glycine max (L.) Merr.). Liu, Zhangxiong,Li, Huihui,Li, Yinghui,Guan, Rongxia,Guo, Yong,Chang, Ruzhen,Qiu, Li-Juan,Fan, Xuhong,Wang, Shuming,Huang, Wen,Yang, Jiyu,Wen, Zixiang,Wang, Dechun,Chen, Pengyin.

[9]A Comparative Proteomics Analysis of Soybean Cotyledon and Unifoliolate Leaves Under Heat (Chilling) Treatments. Jiang, Hong-wei,Xin, Da-wei,Shan, Cai-yun,Wang, Jin-hui,Chen, Qing-shan,Jiang, Hong-wei,Liu, Chun-yan,Hu, Guo-hua,Xin, Da-wei,Zhu, Rong-sheng,Hu, Zhen-bang,Chen, Qing-shan,Qiu, Hong-mei.

[10]Sequencing of the chloroplast genomes of cytoplasmic male-sterile and male-fertile lines of soybean and identification of polymorphic markers. Lin, Chunjing,Dong, Yingshan,Lin, Chunjing,Zhang, Chunbao,Zhao, Hongkun,Xing, Shaochen,Wang, Yumin,Liu, Xiaodong,Yuan, Cuiping,Zhao, Limei,Dong, Yingshan,Zhang, Chunbao,Zhao, Limei,Dong, Yingshan.

[11]Quantitative trait loci analysis of soluble sugar contents in soybean. Wang, Yueqiang,Chen, Pengyin,Zhang, Bo.

[12]Genome-wide identification and expression analysis of the CPP-like gene family in soybean. Zhang, L.,Wang, Y. M.,Yuan, C. P.,Zhang, Y. Y.,Li, H. Y.,Dong, Y. S.,Zhao, H. K.,Yan, X. F.,Li, Q. Y.. 2015

[13]RNAi-mediated SMV P3 cistron silencing confers significantly enhanced resistance to multiple Potyvirus strains and isolates in transgenic soybean. Yang, Xiangdong,Niu, Lu,Zhang, Wei,Yang, Jing,Xing, Guojie,He, Hongli,Guo, Dongquan,Du, Qian,Qian, Xueyan,Yao, Yao,Li, Qiyun,Dong, Yingshan. 2018

[14]Assessing the numbers of SNPs needed to establish molecular IDs and characterize the genetic diversity of soybean cultivars derived from Tokachi nagaha. Liu, Zhangxiong,Htwe, Nang Myint Phyu Sin,Xing, Lili,Li, Yinghui,Guan, Rongxia,Chang, Ruzhen,Qiu, Lijuan,Li, Jun,Fa, Xuhong,Wang, Shuming,Huang, Wen,Yang, Jiyu,Chen, Lijun,Wang, Dechun. 2017

[15]Adaptation and Application of Soybean Phenology Model in the North China Spring Soybean Producing Area. Wang, Can,Zhang, Baogui,Yan, Xiaoyan. 2012

[16]Effects of wheat and soybean stubbles on soil sickness in continuous cropping of cucumber. Feng, T.,Wang, Y. Y.,Zhang, Y. H.,Shi, X. H.,Qin, C. H.,Zhang, S. A.,Jin, S. C.,Zhang, H.,Zhang, J.,Zhang, S. A.,Zhang, J.,Qin, C. H.. 2016

[17]Stability of growth periods traits for soybean cultivars across multiple locations. Liu Zhang-xiong,Chang Ru-zhen,Qiu Li-juan,Wang Xiao-bo,Yang Chun-yan,Xu Ran,Zhang Li-feng,Lu Wei-guo,Wang Qian,Wei Su-hong,Yang Chun-ming,Wang Hui-cai,Wang Rui-zhen,Zhou Rong,Chen Huai-zhu. 2016

[18]Comparison of Genetic Diversity between Chinese and American Soybean (Glycine max (L.)) Accessions Revealed by High-Density SNPs. Liu, Zhangxiong,Li, Huihui,Li, Yinghui,Guan, Rongxia,Guo, Yong,Qiu, Lijuan,Wen, Zixiang,Wang, Dechun,Fan, Xuhong,Wang, Shuming. 2017

[19]Stability analysis of seven agronomic traits for soybean [(Glycine max (L.) Merr.] Tokachi nagaha and its derived cultivars using the AMMI model. Liu, Zhangxiong,Qiu, Lijuan,Fan, Xuhong,Zheng, Yuhong,Wang, Shuming,Huang, Wen,Yang, Jiyu. 2017

[20]Aspects of soybean insect resistance breeding in China. Wang, S. 2004

作者其他论文 更多>>