您好,欢迎访问广东省农业科学院 机构知识库!

Effects of high hydrostatic pressure processing and subsequent storage on phenolic contents and antioxidant activity in fruit and vegetable products

文献类型: 外文期刊

作者: Zhao, Guanghe 1 ; Zhang, Ruifen 1 ; Zhang, Mingwei 1 ;

作者机构: 1.Guangdong Acad Agr Sci, Sericultural & Agrifood Res Inst, Guangdong Key Lab Agr Prod Proc, Key Lab Funct Foods,Minist Agr, Guangzhou 510610, Guangdong, Peoples R China

2.Huazhong Agr Univ, Coll Food Sci & Technol, Wuhan 430070, Peoples R China

关键词: Antioxidant activity;fruit and vegetable products;high hydrostatic pressure;phenolic compounds;storage

期刊名称:INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY ( 影响因子:3.713; 五年影响因子:3.408 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Fresh fruits and vegetables have been reported to possess a variety of bioactivities partly due to their high abundance of phenolics. However, traditional thermal pasteurisation during fruit and vegetable processing typically induces a pronounced loss of phenolic compounds. In contrast, nonthermal pasteurisation techniques, especially high hydrostatic pressure (HHP) processing, are beneficial to the retention of phenolics. In addition to more effectively keeping original freshness, flavour and colour of fruit and vegetable products to the greatest extent, in most cases, HHP processing and subsequent storage more effectively sustain the levels of phenolic compounds and antioxidant activity in fruit and vegetable products compared with thermal pasteurisation. Therefore, HHP processing has a huge potential to preserve fruit and vegetable products rich in phenolic compounds.

  • 相关文献

[1]A Comparison of the Chemical Composition, In Vitro Bioaccessibility and Antioxidant Activity of Phenolic Compounds from Rice Bran and Its Dietary Fibres. Zhao, Guanghe,Zhang, Ruifen,Dong, Lihong,Huang, Fei,Liu, Lei,Deng, Yuanyuan,Ma, Yongxuan,Zhang, Yan,Wei, Zhencheng,Xiao, Juan,Zhang, Mingwei,Zhao, Guanghe,Zhang, Ruifen. 2018

[2]Evolution of the antioxidant capacity and phenolic contents of persimmon during fermentation. Zou, Bo,Wu, Jijun,Yu, Yuanshan,Xiao, Gengsheng,Xu, Yujuan. 2017

[3]Comparing product stability of probiotic beverages using litchi juice treated by high hydrostatic pressure and heat as substrates. Zheng, Xin,Yu, Yuanshan,Xiao, Gengsheng,Xu, Yujuan,Wu, Jijun,Tang, Daobang,Zhang, Yousheng,Zheng, Xin. 2014

[4]Catalytic degradation of phenol in sonolysis by coal ash and H2O2/O-3. Liu, C. S.,Gao, Y. X.,Zhou, J. M.,Liu, H.,Liang, M. Y.. 2009

[5]Phenolic compounds participating in mulberry juice sediment formation during storage. Zou, Bo,Xu, Yu-juan,Wu, Ji-jun,Yu, Yuan-shan,Xiao, Geng-sheng. 2017

[6]Extraction, molecular weight distribution, and antioxidant activity of oligosaccharides from longan (Dimocarpus Longan Lour.) pulp. Lin, Xian,Chen, Jinling,Xiao, Gengsheng,Xu, Yujuan,Tang, Daobang,Wu, Jijun,Wen, Jing,Chen, Weidong. 2016

[7]Optimized ultra-high-pressure-assisted extraction of procyanidins from lychee pericarp improves the antioxidant activity of extracts. Zhang, Ruifen,Zhang, Mingwei,Su, Dongxiao,Zhang, Ruifen,Liu, Lei,Huang, Fei,Dong, Lihong,Deng, Yuanyuan,Zhang, Yan,Wei, Zhencheng,Zhang, Mingwei,Hou, Fangli. 2017

[8]Phenolics and Antioxidant Activity of Mulberry Leaves Depend on Cultivar and Harvest Month in Southern China. Zou, Yuxiao,Sun, Yuanming,Zou, Yuxiao,Liao, Shentai,Shen, Weizhi,Liu, Fan,Tang, Cuiming,Chen, Chung-Yen Oliver. 2012

[9]Effect of carbonic maceration (CM) on mass transfer characteristics and quality attributes of Sanhua plum (Prunus Salicina Lindl.). An, Kejing,Wu, Jijun,Tang, Daobang,Wen, Jing,Fu, Manqin,Xiao, Gengsheng,Xu, Yujuan. 2018

[10]Different effects of extrusion on the phenolic profiles and antioxidant activity in milled fractions of brown rice. Zhang, Ruifen,Khan, Sher Ali,Chi, Jianwei,Wei, Zhencheng,Zhang, Yan,Deng, Yuanyuan,Liu, Lei,Zhang, Mingwei. 2018

[11]Complex enzyme hydrolysis releases antioxidative phenolics from rice bran. Liu, Lei,Wen, Wei,Zhang, Ruifen,Wei, Zhencheng,Deng, Yuanyuan,Xiao, Juan,Zhang, Mingwei. 2017

[12]Evaluation of Biosynthesis, Accumulation and Antioxidant Activityof Vitamin E in Sweet Corn (Zea mays L.) during Kernel Development. Xie, Lihua,Liu, Haiying,Guo, Xinbo,Yu, Yongtao,Mao, Jihua,Hu, Jian Guang,Yu, Yongtao,Mao, Jihua,Hu, Jian Guang,Li, Tong,Liu, Rui Hai. 2017

[13]In vitro Antioxidant and Acetylcholinesterase Inhibitory Activities of the Sesquiterpenes of a Symbiotic Actinomycete Streptomyces sp from South China Sea. Wen, Lu,Chen, Gang,Zhang, Shichang,You, Tinghuo,Fu, Yuhong,Yao, Xiangcao,Chen, Gang,Liu, Fan. 2013

[14]Particle size of insoluble dietary fiber from rice bran affects its phenolic profile, bioaccessibility and functional properties. Zhao, Guanghe,Zhang, Ruifen,Zhao, Guanghe,Zhang, Ruifen,Dong, Lihong,Huang, Fei,Tang, Xiaojun,Wei, Zhencheng,Zhang, Mingwei. 2018

[15]Phenolic Profiles and Antioxidant Activity of Litchi (Litchi Chinensis Sonn.) Fruit Pericarp from Different Commercially Available Cultivars. Li, Wu,Liang, Hong,Zhang, Ming-Wei,Zhang, Rui-Fen,Deng, Yuan-Yuan,Wei, Zhen-Cheng,Zhang, Yan,Tang, Xiao-Jun. 2012

[16]Effect of Light- and Dark-Germination on the Phenolic Biosynthesis, Phytochemical Profiles, and Antioxidant Activities in Sweet Corn (Zea mays L.) Sprouts. Xiang, Nan,Guo, Xinbo,Liu, Fengyuan,Li, Quan,Brennan, Charles Stephen,Hu, Jianguang,Hu, Jianguang,Brennan, Charles Stephen. 2017

[17]Phenolic Composition and Antioxidant Activity in Seed Coats of 60 Chinese Black Soybean (Glycine max L. Merr.) Varieties. Zhang, Rui Fen,Zhang, Fang Xuan,Zhang, Ming Wei,Wei, Zhen Cheng,Yang, Chun Ying,Zhang, Yan,Tang, Xiao Jun,Deng, Yuan Yuan,Chi, Jian Wei. 2011

[18]Different thermal drying methods affect the phenolic profiles, their bioaccessibility and antioxidant activity in Rhodomyrtus tomentosa (Ait.) Hassk berries. Zhao, Guanghe,Zhang, Ruifen,Liu, Lei,Deng, Yuanyuan,Wei, Zhencheng,Zhang, Yan,Ma, Yongxuan,Zhang, Mingwei,Zhao, Guanghe,Zhang, Ruifen,Liu, Lei,Deng, Yuanyuan,Wei, Zhencheng,Zhang, Yan,Ma, Yongxuan,Zhang, Mingwei,Zhao, Guanghe,Zhang, Ruifen.

[19]Antioxidant Activity of Polysaccharide-enriched Fractions Extracted from Pulp Tissue of Litchi Chinensis Sonn.. Kong, Fanli,Zhang, Mingwei,Liao, Sentai,Chi, Jianwei,Wei, Zhencheng,Kong, Fanli,Yu, Shujuan. 2010

[20]Transformation of Litchi Pericarp-Derived Condensed Tannin with Aspergillus awamori. Lin, Sen,Yang, Bao,Duan, Xuewu,Jiang, Yueming,Li, Qing,Zhang, Mingwei,Shi, John. 2016

作者其他论文 更多>>