您好,欢迎访问江苏省农业科学院 机构知识库!

Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic

文献类型: 外文期刊

作者: Wang, Ning 1 ; Xue, Xi-Mei 2 ; Juhasz, Albert L. 3 ; Chang, Zhi-Zhou 1 ; Li, Hong-Bo 4 ;

作者机构: 1.Jiangsu Acad Agr Sci, Inst Agr Resources & Environm, Lab Agr Wastes Treatment & Recycling, Nanjing 210014, Jiangsu, Peoples R China

2.Chinese Acad Sci, Inst Urban Environm, Key Lab Urban Environm & Hlth, Xiamen 361021, Fujian, Peoples R China

3.Univ South Australia, Future Ind Inst, Mawson Lakes, SA, Australia

4.Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Nanjing 210023, Jiangsu, Peoples R China

关键词: Biochar;Arsenic release;Paddy soil;Arsenic functional gene;Fe-reducing bacteria

期刊名称:ENVIRONMENTAL POLLUTION ( 影响因子:8.071; 五年影响因子:8.35 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Previous studies have shown that biochar enhances microbial reduction of iron (Fe) oxyhydroxide under anaerobic incubation. However, there is a lack of data on its influence on arsenic (As) release from As contaminated paddy soils. In this study, paddy soil slurries (120 mg As kg(-1)) were incubated under anaerobic conditions for 60 days with and without the addition of biochar (3%, w/w) prepared from rice straw at 500 degrees C. Arsenic release, Fe reduction, and As fractionation were determined at 1, 10, 20, 30, and 60 d, while Illumina sequencing and real-time PCR were used to characterize changes in soil microbial community structure and As transformation function genes. During the first month of incubation, As released into soil solution increased sharply from 27.9 and 55.9 to 486 and 630 mu g kg(-1) in unamended and biochar amended slurries, with inorganic trivalent As (As-III) being the dominant specie (52.7-91.0% of total As). Compared to unamended slurries, biochar addition increased As and ferrous ion (Fe2+) concentrations in soil solution but decreased soil As concentration in the amorphous Fe/Al oxide fraction (F3). Difference in released As between biochar and unamended treatments (Delta As) increased with incubation time, showing strong linear relationships (R-2 = 0.23-0.33) with Delta Fe2+ and Delta F3, confirming increased As release due to enhanced Fe reduction. Biochar addition increased the abundance of Fe reducing bacteria such as Clostridum (273% vs. 22.7%), Bacillus (334% vs. 2.39%), and Caloramator (4.46% vs. 3.88%). In addition, copy numbers in biochar amended slurries of respiratory As reducing (arrA) and detoxifying reducing genes (arsC) increased 19.0 and 1.70 fold, suggesting microbial reduction of pentavalent As (As-V) adsorbed on Fe oxides to A(III), further contributing to increased As release. (C) 2016 Elsevier Ltd. All rights reserved.

  • 相关文献

[1]Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil. Feng, Yanfang,Xue, Lihong,Gao, Qian,Yang, Linzhang,Feng, Yanfang,Sun, Haijun,Sun, Haijun,Liu, Yang,Lu, Kouping.

[2]Delivery of roxarsone via chicken diet -> chicken -> chicken manure -> soil -> rice plant. Lu, Weisheng,Bai, Cuihua,Huang, Lianxi,He, Zhaohuan,Zhou, Changmin.

[3]Geographic distance and amorphous iron affect the abundance and distribution of Geobacteraceae in paddy soils in China. Yuan, Hai-Yan,Ding, Long-Jun,Chen, Song-Can,Deng, Ye,Li, Xiao-Ming,Zhu, Yong-Guan,Yuan, Hai-Yan,Chen, Song-Can,Li, Xiao-Ming,Wang, Ning,Deng, Ye,Zhu, Yong-Guan. 2016

[4]Straw enhanced CO2 and CH4 but decreased N2O emissions from flooded paddy soils: Changes in microbial community compositions. Wang, Ning,Yu, Jian-Guang,Zhao, Ya-Hui,Chang, Zhi-Zhou,Shi, Xiao-Xia,Ma, Lena Q.,Li, Hong-Bo,Ma, Lena Q.. 2018

[5]Temperature and moisture responses to carbon mineralization in the biochar-amended saline soil. Sun, Junna,He, Fuhong,Zhang, Zhenhua,Shao, Hongbo,Shao, Hongbo,Xu, Gang.

[6]Controlled-release fertilizer, floating duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from rice paddy fields irrigated with nitrogen-rich wastewater. Sun, Haijun,Sun, Haijun,Min, Ju,Feng, Yanfang,Shi, Weiming,Zhang, Hailin,Feng, Yanfang.

[7]Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Xu, Gang,Zhang, You,Sun, Junna,Shao, Hongbo,Shao, Hongbo,Sun, Junna,Zhang, You.

[8]Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars. Pan, Ligang,Yu, Xiangyang,Ying, Guangguo,Kookana, Rai S.,Ying, Guangguo,Pan, Ligang.

[9]Suppression of Chlorantraniliprole Sorption on Biochar in Soil-Biochar Systems. Wang, Ting-Ting,Lu, Meng-Xiao,Liu, Xian-Jin,Yu, Xiang-Yang,Li, Yi-Song,Jiang, Alice C..

[10]The effect of periphyton on seed germination and seedling growth of rice (Oryza sativa) in paddy area. Lu, Haiying,Liu, Junzhuo,Wu, Yonghong,Lu, Haiying,Shao, Hongbo,Kerr, Philip G..

[11]Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils. Yu, Xiang-Yang,Mu, Chang-Li,Liu, Xian-Jin,Gu, Cheng,Liu, Cun.

[12]Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and P-31 NMR analysis. Xu, Gang,Zhang, You,Shao, Hongbo,Sun, Junna,Shao, Hongbo,Sun, Junna,Zhang, You.

[13]Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation. Jin, Hongmei,Chang, Zhizhou,Xu, Yueding,Zhang, Jianying,Jin, Hongmei,Chang, Zhizhou,Xu, Yueding,Zhang, Jianying,Jin, Hongmei,Capareda, Sergio,Gao, Jun.

[14]Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Sun, Haijun,Chu, Lei,Lu, Haiying,Shao, Hongbo,Shi, Weiming.

[15]Bioremediation of Wastewater by Iron Oxide-Biochar Nanocomposites Loaded with Photosynthetic Bacteria. He, Shiying,Duan, Jingjing,Feng, Yanfang,Yang, Bei,Yang, Linzhang,Zhong, Linghao. 2017

[16]Effects of biochar application on Suaeda salsa growth and saline soil properties. Sun, Junna,He, Fuhong,Zhang, Zhenhua,Shao, Hongbo,Shao, Hongbo,Xu, Gang. 2016

[17]Biochar characteristics produced from rice husks and their sorption properties for the acetanilide herbicide metolachlor. Huang, Yufen,Li, Yanliang,Huang, Lianxi,Huang, Qing,Liu, Zhongzhen,Wei, Lan,Huang, Yufen,Li, Yanliang,Huang, Lianxi,Huang, Qing,Liu, Zhongzhen,Mar, Nyo Nyo.

[18]FIRST CHARACTERIZATION OF HUMIC-LIKE SUBSTANCES ISOLATED FROM MAIZE STRAW BIOCHAR. Zhang, Chang,Cai, Hongguang,Zhang, Chang,Ren, Jun,Wang, Lichun.

作者其他论文 更多>>