您好,欢迎访问江苏省农业科学院 机构知识库!

Resistance against Fusarium Head Blight in Transgenic Wheat Plants Expressing the ScNPR1 gene

文献类型: 外文期刊

作者: Yu, Guihong 1 ; Zhang, Xu 1 ; Yao, Jingbao 1 ; Zhou, MiaoPing 1 ; Ma, Hongxiang 1 ;

作者机构: 1.Jiangsu Acad Agr Sci, Prov Key Lab Agrobiol, Jiangsu Collaborat Innovat Ctr Modern Crop Prod, Nanjing 210014, Peoples R China

关键词: Fusarium head blight;ScNPR1 gene;wheat

期刊名称:JOURNAL OF PHYTOPATHOLOGY ( 影响因子:1.789; 五年影响因子:1.574 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Fusarium head blight (FHB) is a severe global wheat disease that may cause severe yield losses, especially during epidemic years. Transforming the regulatory genes in the metabolic pathways of disease resistance into wheat via transgenic methods is one way to improve resistance to FHB. ScNPR1 (Secale cereale-NPR1), a regulatory gene for systemic acquired resistance (SAR), was isolated from S.cereale cv Jingzhouheimai and transformed into the moderately FHB-susceptible wheat variety Ningmai 13. RT-PCR analysis indicated that the ScNPR1 gene was stably expressed in transgenic plants. An evaluation of the resistance to FHB revealed that six ScNPR1 transgenic lines (NP1, NP2, NP3, NP4, NP5 and NP6) exhibited significantly higher FHB resistance than the wild-type wheat Ningmai 13 and the null-segregated plants. The expression of pathogenesis-related (PR) genes after Fusarium graminearum inoculation was earlier or higher than those in the wild-type variety Ningmai 13. The high expression in the early stages of PR genes should account for the enhanced FHB resistance in the transgenic lines. Our results suggest that overexpression of ScNPR1 could be used to improve FHB resistance in wheat.

  • 相关文献

[1]MOLECULAR BREEDING FOR WHEAT FUSARIUM HEAD BLIGHT RESISTANCE IN CHINA. M, Hongxiang,Yao, Jinbao,Zhou, Miaoping,Zhang, Xu,Ren, Lijuan,Yu, Giuhong,Lu, Weizhong.

[2]Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat. Li, Zhao,Xu, Huijun,Du, Lipu,Zhang, Zengyan,Zhou, Miaoping.

[3]GASTRODIA ANTI-FUNGAL PROTEIN ENHANCES FUSARIUM HEAD BLIGHT RESISTANCE IN TRANSGENIC WHEAT. Zhou, Miaoping,Yu, Guihong,Ren, Lijuan,Zhang, Xu,Lu, Weizhong,Ma, Hongxiang.

[4]Evaluation of tebuconazole for the management of Fusarium head blight in China. Sun, H. -Y.,Zhu, Y. -F,Liu, Y. -Y.,Deng, Y. -Y.,Li, W.,Zhang, A. -X.,Chen, H. -G..

[5]Effects of plant height on type I and type II resistance to fusarium head blight in wheat. Yan, W.,Li, H. B.,Liu, C. J.,Yan, W.,Cai, S. B.,Ma, H. X.,Rebetzke, G. J.,Liu, C. J..

[6]Quantitative trait loci for resistance to fusarium head blight and deoxynivalenol accumulation in Wangshuibai wheat under field conditions. Ma, H. X.,Zhang, K. M.,Gao, L.,Bai, G. H.,Chen, H. G.,Cai, Z. X.,Lu, W. Z..

[7]The role of wheat jasmonic acid and ethylene pathways in response to Fusarium graminearum infection. Sun, Yuxin,Xiao, Jin,Jia, Xinping,Ke, Peibei,He, Liqiang,Cao, Aizhong,Wang, Haiyan,Wu, Yufeng,Gao, Xiquan,Wang, Xiue,Jia, Xinping.

[8]APPLICATION OF MOLECULAR MARKERS FOR MARKER-ASSISTED SELECTION ON WHEAT FUSARIUM HEAD BLIGHT RESISTANCE. Lu, Wei-zhong,Ma, Hong-xiang,Zhang, Xu,Zhou, Miao-ping,Ren, Li-juan,Yu, Gui-hong.

[9]Effect of individual Sumai 3 chromosomes on resistance to scab spread within spikes and deoxynivalenol accumulation within kernels in wheat. Zhou, WC,Kolb, FL,Bai, GH,Domier, LL,Yao, JB.

[10]Single-Strand Conformational Polymorphism Markers Associated with a Major QTL for Fusarium Head Blight Resistance in Wheat. Yu, G. H.,Tang, K. X.,Ma, H. X.,Bai, G. H..

[11]Simultaneous determination of deoxynivalenol, and 15-and 3-acetyldeoxynivalenol in cereals by HPLC-UV detection. Yang, D.,Geng, Z. M.,Yao, J. B.,Zhang, X.,Zhang, P. P.,Ma, H. X.. 2013

[12]Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. Xiao, Jin,Jin, Xiahong,Jia, Xinping,Wang, Haiyan,Cao, Aizhong,Pei, Haiyan,Xue, Zhaokun,He, Liqiang,Chen, Qiguang,Wang, Xiue,Jia, Xinping,Zhao, Weiping. 2013

[13]Molecular characterization of Fusarium head blight resistance from wheat variety Wangshuibai. Zhang, X,Zhou, MP,Ren, LJ,Bai, GH,Ma, HX,Scholten, OE,Guo, PG,Lu, WZ. 2004

[14]INFECTION OF GREEN FLUORESCENCE PROTEIN-TAGGED FUSARIUM GRAMINEARUM ON WHEAT AND BARLEY SPIKES. Lu, Wei-zhong,Ma, Hong-xiang,Van De Lee, Theo,Dufresne, Marie,Liu, Tai-guo,Yu, Da-zhao.

[15]A novel, in vivo, indoor method to preserve rice black-streaked dwarf virus in small brown planthopper using wheat seedling as a bridge host. Ren, Chunmei,Cheng, Zhaobang,Yang, Liu,Miao, Qian,Fan, Yongjian,Zhou, Yijun.

[16]Identification of novel quantitative trait loci for resistance to Fusarium seedling blight caused by Microdochium majus and M. nivale in wheat. Ren, Runsheng,Yang, Xingping,Ren, Runsheng,Foulkes, John,Mayes, Sean,Ray, Rumiana V..

[17]Photosynthetic and biochemical activities in flag leaves of a newly developed superhigh-yield hybrid rice (Oryza sativa) and its parents during the reproductive stage. Zhang, C. -J.,Chu, H. -J.,Chen, G. -X.,Shi, D. -W.,Zuo, M.,Wang, J.,Lu, C. -G.,Wang, P.,Chen, L..

[18]CLONING AND EXPRESSION ANALYSIS OF TWO UDP-GLUCOSYLTRANSFERASES GENES IN WHEAT. Lin, F. Y.,Shi, J. R.,Lu, Q. X.,Xu, J. H.,Yang, H. Y..

[19]Effect of environmental factors on Fusarium population and associated trichothecenes in wheat grain grown in Jiangsu province, China. Dong, Fei,Qiu, Jianbo,Xu, Jianhong,Yu, Mingzheng,Wang, Shufang,Shi, Jianrong,Sun, Yue,Zhang, Gufeng.

[20]PROGRESS ON INHERITANCE AND BREEDING FOR WHEAT SCAB RESISTANCE IN JAAS. Yao, Jinbao,Ma, Hongxiang,Lu, Weizhong.

作者其他论文 更多>>