您好,欢迎访问江苏省农业科学院 机构知识库!

Comprehensive analysis of differentially expressed genes under salt stress in pear (Pyrus betulaefolia) using RNA-Seq

文献类型: 外文期刊

作者: Li, Hui 1 ; Lin, Jing 1 ; Yang, Qing-Song 1 ; Li, Xiao-Gang 1 ; Chang, You-Hong 1 ;

作者机构: 1.Jiangsu Acad Agr Sci, Inst Hort, Jiangsu Key Lab Hort Crop Genet Improvement, Nanjing 210014, Jiangsu, Peoples R China

关键词: P. betulaefolia;Salt stress;DEG;Enrichment analysis;RNA-Seq

期刊名称:PLANT GROWTH REGULATION ( 2020影响因子:3.412; 五年影响因子:3.691 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Pear is one of the most important fruit trees in temperate zones, and is cultivated widely throughout the world. Salt stress affects the normal growth of pear, and further affects fruit yield and quality. Pyrus betulaefolia is a common rootstock in pear orchards, which can improve salt tolerance by grafting pear onto it. However, limited availability of P. betulaefolia genomic information has hindered research on the mechanisms underlying this tolerance. Consequently, we comprehensively analyzed P. betulaefolia salt tolerance using RNA-Seq under NaCl and NaCl + LaCl3 treatments in leaf and root. Based on mapping analyses, 3796 novel transcripts were identified, which contained 18 differentially expressed genes (DEGs). There were 90,752 alternative splicing events identified, with transcription start site and transcription terminal site as the major splicing patterns. In addition, we identified 583 differential expressed exons. A total of 276 DEGs were identified among all six comparisons, and 237 of these were up-regulated and 39 were down-regulated. One DEG (Pbr038831.1) was detected in all treatments, and was up-regulated. All DEGs were divided into three clusters according to hierarchical clustering. Kyoto Encyclopedia of Genes and Genomes enrichment analyses showed that 18 DEGs were located in six significantly enriched terms, and specific enriched categories and DEGs were identified for NaCl and NaCl + LaCl3 treatments. All of these enriched genes may be related to salt stress in P. betulaefolia. This transcriptome analysis will provide a rich genetic resource for gene discovery related to salt tolerance in P. betulaefolia and closely related species. The data will serve as an important public information platform to further understanding of the molecular mechanisms involved in salt tolerance in P. betulaefolia.

  • 相关文献

[1]De novo transcriptome sequencing of Acer palmatum and comprehensive analysis of differentially expressed genes under salt stress in two contrasting genotypes. Rong, Liping,Li, Qianzhong,Li, Shushun,Tang, Ling,Wen, Jing.

[2]Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.). Sun, Xiaochuan,Xu, Liang,Wang, Yan,Luo, Xiaobo,Kinuthia, Karanja Benard,Nie, Shanshan,Feng, Haiyang,Li, Chao,Liu, Liwang,Sun, Xiaochuan,Xu, Liang,Wang, Yan,Nie, Shanshan,Liu, Liwang,Zhu, Xianwen.

[3]Transcriptome sequencing and analysis of major genes involved in calcium signaling pathways in pear plants (Pyrus calleryana Decne.). Lin, Jing. 2015

[4]痛风雏鹅肾组织损伤的RNA-seq分析. 邵春荣,黄远丕,黄运茂,应诗家,奚雨萌,施振旦. 2020

[5]基于RNA-seq的两种柳树转录组微卫星特征比较分析. 郑纪伟,周洁,王保松,何旭东. 2019

[6]玉米Glyco-hydro-16糖苷酶家族全基因组的鉴定及其遗传分化. 林峰,葛敏,周玲,赵涵. 2016

[7]热应激下公兔睾丸组织形态和精液转录组分析. 蔡佳炜,张琛,靳荣帅,鲍志远,张希宇,王璠,翟频,赵博昊,陈阳,汤先伟,吴信生. 2023

[8]利用RNA-seq技术分析淹水胁迫下转BnERF拟南芥差异表达基因. 吕艳艳,付三雄,陈松,张唯,戚存扣. 2015

[9]基于海甘蓝RNA-Seq序列开发EST-SSR分子标记. 戚维聪,程计华,黄邦全,李坦,林峰. 2014

[10]Rearrangement of nitrogen metabolism in rice (Oryza sativa L.) under salt stress. Xu, Jianwen,Huang, Xi,Lan, Hongxia,Zhang, Hongsheng,Huang, Ji,Xu, Jianwen.

[11]Molybdenum Affects Photosynthesis and Ionic Homeostasis of Chinese Cabbage under Salinity Stress. Hu, Chengxiao,Sun, Xuecheng,Zhao, Xiaohu,Tan, Qiling,Zhang, Ying,Zhang, Mu,Li, Na.

[12]Effects of 5-aminolevulinic acid on nitrogen metabolism and ion distribution of watermelon seedlings under salt stress. Chen, G.,Fan, P. S.,Feng, W. M.,Guan, A. Q.,Lu, Y. Y.,Wan, Y. L..

[13]Roles of xanthophylls and exogenous ABA in protection against NaCl-induced photodamage in rice (Oryza sativa L) and cabbage (Brassica campestris). Zhu, Su-Qin,Chen, Ming-Wei,Liang, Jian-Sheng,Zhu, Su-Qin,Ji, Ben-Hua,Jiao, De-Mao.

[14]Soil salinity increases the tolerance of excessive sulfur fumigation stress in tomato plants. Ding, Xiaotao,Ding, Xiaotao,Deng, Qi,Yu, Chih-Li,Hu, Dafeng, I,Zhang, Dong,Jiang, Yuping,Zhou, Suping.

[15]Physiological and epigenetic analyses of Brassica napus seed germination in response to salt stress. Fang, Yujie,Li, Jian,Jiang, Jinjin,Geng, Yulu,Wang, Jinglei,Wang, Youping,Fang, Yujie.

[16]Physiological and antioxidant responses of Basella alba to NaCl or Na2SO4 stress. Ai, Shaoying,Yang, Shaohai,Chen, Yong,Sun, Lili,Wang, Ronghui,Li, Mengjun,Zeng, Zhaobing,Ning, Jianfeng,Ai, Shaoying,Yang, Shaohai,Chen, Yong,Sun, Lili,Wang, Ronghui,Li, Mengjun,Zeng, Zhaobing,Ning, Jianfeng,Ai, Shaoying,Yang, Shaohai,Chen, Yong,Sun, Lili,Wang, Ronghui,Li, Mengjun,Zeng, Zhaobing,Ning, Jianfeng,Cui, Lihua.

[17]Genome-wide characterization of the ankyrin repeats gene family under salt stress in soybean. Zhang, Dayong,Wan, Qun,He, Xiaolan,Ning, Lihua,Huang, Yihong,Xu, Zhaolong,Liu, Jia,Shao, Hongbo,Shao, Hongbo.

[18]Balance between salt stress and endogenous hormones influence dry matter accumulation in Jerusalem artichoke. Shao, Tianyun,Li, Lingling,Wu, Yawen,Chen, Manxia,Long, Xiaohua,Liu, Zhaopu,Shao, Hongbo,Shao, Hongbo,Rengel, Zed.

[19]Seed Germination Ecology of Catchweed Bedstraw (Galium aparine). Wang, Hongchun,Lou, Yuanlai,Zhang, Bing,Dong, Liyao.

[20]Applying hyperspectral imaging to explore natural plant diversity towards improving salt stress tolerance. Brestic, Marian,Shao, Hongbo,He, Xiaolan,Shao, Hongbo,Brestic, Marian,Zivcak, Marek,Olsovska, Katarina,Kovar, Marek,Sytar, Oksana.

作者其他论文 更多>>