您好,欢迎访问新疆农业科学院 机构知识库!

Overexpression of ScALDH21 gene in cotton improves drought tolerance and growth in greenhouse and field conditions

文献类型: 外文期刊

作者: Yang, Honglan 1 ; Zhang, Daoyuan 1 ; Li, Xiaoshuang 1 ; Li, Haiyan 1 ; Zhang, Dawei 1 ; Lan, Haiyan 3 ; Wood, Andrew J 1 ;

作者机构: 1.Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Key Lab Biogeog & Bioresource Arid Land, Xinjiang 830011, Urumqi, Peoples R China

2.Xinjiang Univ, Coll Resource & Environm Sci, Urumqi 830046, Peoples R China

3.Xinjiang Univ, Coll Life Sci & Technol, Xinjiang Key Lab Biol Resources & Genet, Urumqi 830046, Peoples R China

4.Xinjiang Acad Agr Sci, Econ Crop Res Inst, Urumqi 830091, Peoples R China

5.Southern Illinois Univ Carbondale, Dept Plant Biol, Carbondale, IL 62901 USA

关键词: Syntrichia caninervis;ScALDH21;Transgenic cotton;Drought tolerance;Cotton yield

期刊名称:MOLECULAR BREEDING ( 影响因子:2.589; 五年影响因子:2.75 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Aldehyde dehydrogenase (ALDH) is essential for scavenging redundant aldehydes when plants are exposed to stress. The aim of the present study was to validate the ectopic expression of the ScALDH21 gene, which is isolated from Syntrichia caninervis, an extremely drought-tolerant moss, to improve drought tolerance in cotton (Gossypium hirsutum L.). In our study, the ScALDH21-transformed cotton was identified via PCR, RT-PCR, and DNA gel blotting, and the growth and physiological characteristics related to drought tolerance were compared between the transgenic cotton (TC) and non-transgenic cotton (NT) grown in a greenhouse and in field conditions. The results indicated that TC accumulated approximately 11.8-304 % more proline than did NT under drought stress, and produced a lower concentration of lipid peroxidation-derived reactive aldehydes and had a higher peroxidase activity under oxidative stress. Moreover, TC showed reduced loss of the net photosynthetic rate compared with NT. Under field conditions, TC showed greater plant height, larger bolls, and greater cotton fiber yield than NT, but no significant difference in fiber quality between TC and NT following different water-withholding treatments. These results suggest that overexpression of ScALDH21 can greatly improve the drought tolerance of cotton without reduction in yield and fiber quality.

  • 相关文献

[1]Rational Water and Nitrogen Management Improves Root Growth, Increases Yield and Maintains Water Use Efficiency of Cotton under Mulch Drip Irrigation. Zhang, Hongzhi,Khan, Aziz,Luo, Honghai,Zhang, Hongzhi,Tan, Daniel K. Y.. 2017

[2]Mapping QTLs for drought tolerance in an F-2:3 population from an inter-specific cross between Gossypium tomentosum and Gossypium hirsutum. J.Y. Zheng,G. Oluoch,M.K. Riaz Khan,X.X. Wang,X.Y. Cai,Z.L. Zhou,C.Y. Wang,Y.H. Wang,X.Y. Li,F. Liu,K.B. Wang. 2016

[3]Association Analysis of the nced and rab28 Genes with Phenotypic Traits Under Water Stress in Maize. Su, Zhijun,Li, Xinhai,Hao, Zhuanfang,Xie, Chuanxiao,Li, Mingshun,Weng, Jianfeng,Zhang, Degui,Zhang, Shihuang,Su, Zhijun,Li, Xinhai,Hao, Zhuanfang,Xie, Chuanxiao,Li, Mingshun,Weng, Jianfeng,Zhang, Degui,Zhang, Shihuang,Liang, Xiaoling,Su, Zhijun,Wang, Zhigang,Gao, Julin.

[4]Identification of loci contributing to maize drought tolerance in a genome-wide association study. Wang, Nan,Lv, Xiang-ling,Li, Feng-hai,Wang, Zhen-ping,Jiang, Li-yan,Liang, Xiao-ling,Yang, Jie,Wang, Nan,Wang, Zhen-ping,Weng, Jian-feng,Zhang, De-gui,Yong, Hong-jun,Li, Ming-shun,Zhang, Shi-huang,Hao, Zhuan-fang,Li, Xin-hai.

[5]Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. Li, Chunhui,Li, Yongxiang,Wu, Xun,Zhang, Dengfeng,Shi, Yunsu,Song, Yanchun,Wang, Tianyu,Li, Yu,Sun, Baocheng,Liu, Cheng,Buckler, Edward S.,Buckler, Edward S.,Zhang, Zhiwu. 2016

[6]Identification of Functional Genetic Variations Underlying Drought Tolerance in Maize Using SNP Markers. Hao, Zhuanfang,Li, Xinhai,Xie, Chuanxiao,Weng, Jianfeng,Li, Mingshun,Zhang, Degui,Liu, Lingling,Liu, Sisi,Zhang, Shihuang,Liang, Xiaoling. 2011

[7]An analysis of the polymorphisms in a gene for being involved in drought tolerance in maize. Li, Liang,Hao, Zhuanfang,Li, Xinhai,Xie, Chuanxiao,Li, Mingshun,Zhang, Degui,Weng, Jianfeng,Su, Zhijun,Zhang, Shihuang,Liang, Xiaoling. 2011

[8]Simple nonlinear model for the relationship between maize yield and cumulative water amount. Liu Cheng,Yang Xiao-hong,Li Jian-sheng,Liu Cheng,Sun Bao-cheng,Tang Huai-jun,Xie Xiao-qing,Wang Tian-yu,Li Yu,Zhang Deng-feng,Shi Yun-su,Song Yan-chun. 2017

[9]Genetic location and evaluation of chromosomal segments for drought tolerance at flowering stage in maize using selected backcross populations. Li, Y.,Shi, Y.,Song, Y.,Wang, T.,Li, Y.,Liu, C..

[10]Trends in drought tolerance in Chinese maize cultivars from the 1950s to the 2000s. Sun, Qi,Zhang, Degui,Li, Xinhai,Hao, Zhuanfang,Weng, Jianfeng,Li, Mingshun,Zhang, Shihuang,Sun, Qi,Liang, Xiaoling.

作者其他论文 更多>>