您好,欢迎访问中国水产科学研究院 机构知识库!

Primary culture of Zhikong scallop Chlamys farreri hemocytes as an in vitro model for studying host-pathogen interactions

文献类型: 外文期刊

作者: Ji, Aichang 1 ; Li, Xueyu 1 ; Fang, Sha 1 ; Qin, Zhenkui 1 ; Bai, Changming 2 ; Wang, Chongming 2 ; Zhang, Zhifeng 1 ;

作者机构: 1.Ocean Univ China, Minist Educ, Key Lab Marine Genet & Breeding, Qingdao 266003, Peoples R China

2.Chinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, Div Maricultural Organism Dis Control & Mol Patho, Qingdao 266071, Peoples R China

关键词: Chlamys farreri;Cell culture;Hemocyte;Vibrio anguillarum;Ostreid herpesvirus 1

期刊名称:DISEASES OF AQUATIC ORGANISMS ( 影响因子:1.802; 五年影响因子:2.148 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Primary cultured cells can be a useful tool in studies on physiology, virology, and toxicology. Hemocytes play an important role in animal rapid response to pathogen invasion. In this study, an appropriate medium for primary culture of hemocytes of the bivalve Chlamys farreri was developed by adding 5% fetal bovine serum and 1% C. farreri serum to Leibovitz L-15 medium. These primary cultured hemocytes were maintained for more than 40 d in vitro and were classified into 3 types: (1) granulocytes containing numerous granules in the cytoplasm, (2) hyalinocytes with no or few granules, (3) a small percentage of macrophage-like cells. Furthermore, the primary cultured hemocytes were observed to be sensitive to bacterial and viral challenges. These hemocytes could phagocytose the bacterium Vibrio anguillarum, and presented cytopathic effects on the extracellular products (ECPs) of V. anguillarum; the mRNA level of QM, which plays an important role in immune response, also significantly increased 12 h after infection. When these hemocytes were challenged with ostreid herpesvirus 1 (OsHV-1), virus particles and empty capsids in the cells infected for 48 h were observed by transmission electron microscopy, and the QM mRNA level increased significantly at 12 h and 24 h following OsHV-1 challenge. This primary culture system is available for C. farreri hemocytes which can be used in the future to study host-pathogen interactions.

  • 相关文献

[1]Emerging and endemic types of Ostreid herpesvirus 1 were detected in bivalves in China. Bai, Changming,Wang, Chongming,Xia, Junyang,Zhang, Shuai,Huang, Jie,Bai, Changming,Wang, Chongming,Huang, Jie,Sun, Hailin.

[2]Molecular characterization and immune response expression of the QM gene from the scallop Chlamys farreri. Chen, Guofu,Zhang, Chunyun,Wang, Yue,Wang, Yuanyuan,Guo, Changlu,Wang, Chongming.

[3]Identification and characterization of ostreid herpesvirus 1 associated with massive mortalities of Scapharca broughtonii broodstocks in China. Bai, Changming,Gao, Wenhui,Wang, Chongming,Wang, Qingchen,Huang, Jie,Bai, Changming,Wang, Chongming,Huang, Jie,Yu, Tao,Zhang, Tianwen,Qiu, Zhaoxing.

[4]Relationship between quality of pearl cultured in the triangle mussel Hyriopsis cumingii of different ages and its immune mechanism. Xu, Qiao-qing,Xie, Jun,Zhao, Chaoyang,Xu, Qiao-qing,Guo, Long-gen. 2011

[5]Are CuO nanoparticles effects on hemocytes of the marine scallop (Chlamys farreri) caused by particles and/or corresponding released ions?. Sun, Xuemei,Chen, Bijuan,Xia, Bin,Han, Qian,Zhu, Lin,Qu, Kerning,Sun, Xuemei,Chen, Bijuan,Xia, Bin,Zhu, Lin,Qu, Kerning. 2017

[6]Identification and characterization of a novel calreticulin involved in the immune response of the Zhikong scallop, Chlamys farreri. Wang, Guanghua,Zhu, Dongfa,Wang, Guanghua,Yang, Ning,Zhang, Min,Jiang, Zengjie,Jiang, Zengjie.

[7]Modelling the effect of food depletion on scallop growth in Sungo Bay (China). Bacher, C,Grant, J,Hawkins, AJS,Fang, JG,Zhu, MY,Besnard, M.

[8]Assessment of the local environmental impact of intensive marine shellfish and seaweed farming-Application of the MOM system in the Sungo Bay, China. Zhang, Jihong,Fang, Jianguang,Wang, Wei,Jiang, Zengjie,Zhang, Jihong,Fang, Jianguang,Wang, Wei,Jiang, Zengjie,Hansen, Pia Kupka.

[9]Physiological and biochemical responses of Zhikong scallop, Chlamys farreri, to different thermal stressors. Jiang, Weiwei,Jiang, Weiwei,Jiang, Weiwei,Jiang, Zengjie,Du, Meirong,Mao, Yuze,Li, Jiaqi,Fang, Jinghui,Lv, Xuning,Xue, Suyan,Wang, Wei,Zhang, Jihong,Fang, Jianguang,Jiang, Zengjie,Zhang, Jihong,Fang, Jianguang,Zhang, Yuan.

[10]Discovery of genes associated with cadmium accumulation from gill of scallop Chlamys farreri based on high-throughput sequencing. Zhang, Hui,Zhai, Yuxiu,Yao, Lin,Jiang, Yanhua,Li, Fengling,Zhang, Hui,Zhai, Yuxiu,Yao, Lin,Jiang, Yanhua,Li, Fengling,Zhang, Hui,Zhai, Yuxiu,Yao, Lin,Jiang, Yanhua,Li, Fengling.

[11]Variations in retention efficiency of bivalves to different concentrations and organic content of suspended particles. Zhang Jihong,Fang Jianguang,Liang Xingming. 2010

[12]Comparative transcriptomics reveals genes involved in metabolic and immune pathways in the digestive gland of scallop Chlamys farreri following cadmium exposure. Zhang Hui,Zhai Yuxiu,Yao Lin,Jiang Yanhua,Li Fengling,Zhang Hui,Zhai Yuxiu,Yao Lin,Jiang Yanhua,Li Fengling,Zhang Hui,Zhai Yuxiu,Yao Lin,Jiang Yanhua,Li Fengling. 2017

[13]Assortative fertilization in Chlamys farreri and Patinopecten yessoensis and its implication in scallop hybridization. Lu, Zhengming,Yang, Aiguo,Wang, Qingyin,Liu, Zhihong,Zhou, Liqing. 2006

[14]Size fraction of phytoplankton and the contribution of natural plankton to the carbon source of Zhikong scallop Chlamys farreri in mariculture ecosystem of the Sanggou Bay. Jiang Zengjie,Du Meirong,Fang Jinghui,Gao Yaping,Li Jiaqi,Fang Jianguang,Jiang Zengjie,Fang Jianguang,Zhao Li. 2017

[15]A preliminary study of differentially expressed genes of the scallop Chlamys farreri against acute viral necrobiotic virus (AVNV). Chen, Guofu,Wang, Chenchao,Zhang, Chunyun,Wang, Yuanyuan,Xu, Zhong,Wang, Chongming. 2013

[16]Bioinformatics analysis of hemocyte miRNAs of scallop Chlamys farreri against acute viral necrobiotic virus (AVNV). Chen, Guofu,Zhang, Chunyun,Jiang, Fengjuan,Wang, Yuanyuan,Xu, Zhong,Wang, Chongming. 2014

[17]A novel serine protease with clip domain from scallop Chlamys farreri. Zhu, Ling,Song, Linsheng,Zhao, Jiangmin,Li, Chenghua,Xu, Wei,Zhu, Ling,Mao, Yuze. 2008

[18]Carbon dioxide fixation by the seaweed Gracilaria lemaneiformis in integrated multi-trophic aquaculture with the scallop Chlamys farreri in Sanggou Bay, China. Han, Tingting,Han, Tingting,Han, Tingting,Jiang, Zengjie,Fang, Jianguang,Zhang, Jihong,Mao, Yuze,Zou, Jian,Huang, Yao,Wang, Dongzhe,Huang, Yao,Wang, Dongzhe.

[19]The effects of Zhikong scallop (Chlamys farreri) on the microbial food web in a phosphorus-deficient mariculture system in Sanggou Bay, China. Lu, Jiachang,Lu, Jiachang,Huang, Lingfeng,Xiao, Tian,Zhang, Wuchang,Jiang, Zengjie.

[20]Gene cloning and expression analysis of IRF1 in half-smooth tongue sole (Cynoglossus semilaevis). Lu, Yang,Wang, Qilong,Shao, Changwei,Chen, Songlin,Sha, Zhenxia,Lu, Yang,Liu, Yang.

作者其他论文 更多>>