您好,欢迎访问河南省农业科学院 机构知识库!

iTRAQ-based quantitative proteomics analysis of rice leaves infected by Rice stripe virus reveals several proteins involved in symptom formation

文献类型: 外文期刊

作者: Wang, Biao 1 ; Hajano, Jamal-U-Ddin 1 ; Ren, Yingdang 2 ; Lu, Chuantao 2 ; Wang, Xifeng 1 ;

作者机构: 1.Chinese Acad Agr Sci, Inst Plant Protect, State Key Lab Biol Plant Dis & Insect Pests, Beijing 100193, Peoples R China

2.Henan Acad Agr Sci, Inst Plant Protect, Zhengzhou 450002, Peoples R China

关键词: Rice;Proteome;iTRAQ;Magnesium chelatase;Peptidase;Plant defense

期刊名称:VIROLOGY JOURNAL ( 影响因子:4.099; 五年影响因子:3.719 )

ISSN: 1743-422X

年卷期: 2015 年 12 卷

页码:

收录情况: SCI

摘要: Background: Rice plants infected by Rice stripe virus (RSV) usually leads to chlorosis and death of newly emerged leaves. However, the mechanism of RSV-induced these symptoms was not clear. Methods: We used an iTRAQ approach for a quantitative proteomics comparison of non-infected and infected rice leaves. RT-qPCR and Northern blot analyses were performed for assessing the transcription of candidate genes. Results: As a whole, 681 (65.8 % downregulated, 34.2 % upregulated infected vs. non-infected) differentially accumulated proteins were identified. A bioinformatics analysis indicated that ten of these regulated proteins are involved in chlorophyll biosynthesis and three in cell death processes. Subsequent RT-qPCR results showed that downregulation of magnesium chelatase was due to reduced expression levels of the genes encoding subunits CHLI and CHLD, which resulted in chlorophyll reduction involved in leaf chlorosis. Three aspartic proteases expressed higher in RSV-infected leaves than those in the control leaves, which were also implicated in RSV-induced cell death. Northern blot analyses of CHLI and p0026h03.19 confirmed the RT-qPCR results. Conclusions: The magnesium chelatase and aspartic proteases may be associated with RSV-induced leaf chlorosis and cell death, respectively. The findings may yield new insights into mechanisms underlying rice stripe disease symptom formation.

  • 相关文献

[1]Comparative Proteomic Analysis of Gossypium thurberi in Response to Verticillium dahliae Inoculation. Weiping Fang,Deyi Xie,Heqin Zhu,Wu Li,Zhenzhen Xu,Lirong Yang,Zhifang Li,Li Sun,Jinxia Wang,Lihong Nie,Zhongjie Tang,Shuping Lv,Fu’an Zhao,Yao Sun,Yuanming Zhao,Jianan Hou,Xiaojie Yang. 2015

[2]Comparative Proteomic Analysis of the Response of Maize (Zea mays L.) Leaves to Long Photoperiod Condition. Wu, Liuji,Tian, Lei,Wang, Shunxi,Liu, Ping,Tian, Zhiqiang,Zhang, Huimin,Chen, Yanhui,Wu, Liuji,Tian, Lei,Wang, Shunxi,Liu, Ping,Tian, Zhiqiang,Zhang, Huimin,Chen, Yanhui,Wu, Liuji,Tian, Lei,Wang, Shunxi,Liu, Ping,Tian, Zhiqiang,Zhang, Huimin,Chen, Yanhui,Zhang, Jun,Liu, Haiping. 2016

[3]Long photoperiod affects the maize transition from vegetative to reproductive stages: a proteomic comparison between photoperiod-sensitive inbred line and its recurrent parent. Tian, Lei,Wang, Shunxi,Song, Xiaoheng,Liu, Ping,Chen, Zan,Chen, Yanhui,Wu, Liuji,Tian, Lei,Wang, Shunxi,Song, Xiaoheng,Liu, Ping,Chen, Zan,Chen, Yanhui,Wu, Liuji,Tian, Lei,Wang, Shunxi,Song, Xiaoheng,Liu, Ping,Chen, Zan,Chen, Yanhui,Wu, Liuji,Zhang, Jun. 2018

[4]Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique. Li, Wu,Li, Wu,Zhao, Fu'an,Fang, Weiping,Xie, Deyi,Hou, Jianan,Yang, Xiaojie,Zhao, Yuanming,Tang, Zhongjie,Nie, Lihong,Lv, Shuping. 2015

[5]Proteomic identification of differentially expressed proteins in Gossypium thurberi inoculated with cotton Verticillium dahliae. Zhao, Fu'an,Fang, Weiping,Xie, Deyi,Zhao, Yuanming,Tang, Zhongjie,Li, Wu,Nie, Lihong,Lv, Shuping,Zhao, Fu'an. 2012

[6]Screening of rice (Oryza sativa) cultivars for resistance to rice black streaked dwarf virus using quantitative PCR and visual disease assessment. Zhang, H. B.,Wang, X. F.,Hajano, J. -U. -D.,Ren, Y. D.,Lu, C. T..

[7]Auxin Signaling is Involved in Iron Deficiency-induced Photosynthetic Inhibition and Shoot Growth Defect in Rice (Oryza sativa L.). Liu, Kaidong,Yuan, Changchun,Liu, Jinxiang,Yue, Runqing,Tie, Shuanggui,Zhang, Lei,Sun, Tao,Yang, Yanjun,Shen, Chenjia.

[8]Heavy Metal Contamination in a Soil-Rice Ecosystem in the Vicinity of Abandoned Rural Unsanitary Landfill. Guan, Yidong,Guan, Yidong,Du, Yehong,Zhang, Zhiyuan,Ge, Chuan,Luo, Ancheng,La, Gui-xiao,Cao, Jie.

[9]Quantitative trait loci analysis for rice seed vigor during the germination stage. Wang, Zhou-fei,Wang, Jian-fei,Bao, Yong-mei,Wang, Fu-hua,Zhang, Hong-sheng,Wang, Fu-hua. 2010

作者其他论文 更多>>