您好,欢迎访问河北省农林科学院 机构知识库!

EFFECTS OF SOIL DROUGHT STRESS ON PLANT REGENERATION EFFICIENCY AND ENDOGENOUS HORMONE LEVELS OF IMMATURE EMBRYOS IN WHEAT (&ITTRITICUM AESTIVUM&IT L.)

文献类型: 外文期刊

作者: Bie, Xiaomin 1 ; Wang, Ke 1 ; Liu, Chang 1 ; Liu, Yongwei 3 ; Du, Lipu 1 ; Mao, Xinguo 1 ; Ye, Xingguo 1 ;

作者机构: 1.Chinese Acad Agr Sci, Inst Crop Sci, Natl Key Facil Crop Gene Resources & Genet Improv, Beijing 100081, Peoples R China

2.Shandong Agr Univ, Coll Life Sci, Shandong Key Lab Crop Biol, State Key Lab Crop Biol, Tai An 271000, Shandong, Peoples R China

3.Hebei Acad Agr & Forestry Sci, Inst Genet & Physiol, Plant Genet Engn Ctr Hebei Prov, Shijiazhuang 050051, Hebei, Peoples R China

关键词: Wheat;Drought stress;Immature embryos;Plant regeneration;Plant growth regulators

期刊名称:PAKISTAN JOURNAL OF BOTANY ( 影响因子:0.972; 五年影响因子:0.988 )

ISSN: 0556-3321

年卷期: 2017 年 49 卷 5 期

页码:

收录情况: SCI

摘要: In this study, the water supply in soil for wheat mother donor plants was controlled, leading to drought stress conditions, and the relative soil water content (RSWC) was measured in different soil depths. The immature embryos of common wheat (Triticum aestivum L.) 13 days post anthesis (DPA) were used to test regeneration capacity. The accumulation of the plant growth regulators (PGRs) including abscisic acid (ABA), indole-3-acetic acid (IAA), and hydrogen peroxide (H2O2) in the wheat embryos grown under the two conditions was measured. The results indicated that RSWC difference between the drought treatment and the irrigated control was more than 13% at the various soil depths, with the maximum difference was observed at 40 cm depth. Tissue culture evaluation showed that the plant regeneration efficiency of the immature embryos grown under drought stress treatment was significantly higher than that of the tissues grown under the control condition. Assay for PGR found that the drought stress caused obviously increased concentration of endogenous ABA and H2O2, and slightly decreased level of IAA in the target tissues. Therefore, it seems that the concentration of endogenous ABA, IAA, and H2O2 in immature wheat embryos is very important in regeneration capacity. Drought stress can improve the regeneration capacity by changing the levels of ABA, IAA, and H2O2. Our results would be helpful to efficient development of genetically modified wheat plants through improvement of regeneration via manipulating the endogenous PGRs.

  • 相关文献

[1]Gibberellin-responding and non-responding dwarf mutants in foxtail millet. Chen, JG,Zhou, X,Zhang, YZ.

[2]Plant regeneration from cell suspension-derived protoplasts of Populus x beijingensis. Cai, Xiao,Kang, Xiang-Yang,Cai, Xiao. 2014

[3]Identification of microRNAs involved in drought stress responses in early-maturing cotton by high-throughput sequencing. Dong, Zhanghui,Zhu, Qingzhu,Zhao, Lifen,Sui, Shuxiang,Li, Zengshu,Zhang, Yanli,Wang, Hu,Tian, Dongliang,Zhao, Yankun,Zhang, Jianhong. 2018

[4]Improvement of drought tolerance in white clover (Trifolium repens) by transgenic expression of a transcription factor gene WXP1. Jiang, Qingzhen,Guo, Xiulin,Bouton, Joseph,Wang, Zeng-Yu,Zhang, Ji-Yi,Bedair, Mohamed,Sumner, Lloyd,Guo, Xiulin.

[5]Generation of transgenic wheat lines with altered expression levels of 1Dx5 high-molecular weight glutenin subunit by RNA interference. Yue, S. J.,Li, Y. W.,Zhu, Y. F.,Chen, Y.,Jia, X.,Li, H.,Yue, S. J.. 2008

[6]Molecular cytogenetic analysis of intergeneric chromosomal translocations between wheat (Triticum aestivum L.) and Dasypyrum villosum arising from tissue culture. Li, HJ,Guo, BH,Li, YW,Du, LQ,Jia, X,Chu, CC. 2000

[7]Effects of the wheat UDP-glucosyltransferase gene TaUGT-B2 on Agrobacterium-mediated plant transformation. Zhou, Xiaohong,Wang, Ke,Du, Lipu,Lin, Zhishan,Ye, Xingguo,Liu, Yongwei.

[8]Homoeologous cloning of omega-secalin gene family in a wheat 1BL/1RS translocation. Chai, JF,Liu, X,Jia, JZ. 2005

[9]Fate of labeled urea-N-15 as basal and topdressing applications in an irrigated wheat-maize rotation system in North China Plain: I winter wheat. Jia, Shulong,Wang, Xiaobin,Dai, Kuai,Zhao, Quansheng,Zhang, Xiaoming,Zhang, Dingchen,Feng, Zonghui,Wu, Xueping,Cai, Dianxiong,Jia, Shulong,Wang, Xiaobin,Dai, Kuai,Zhao, Quansheng,Zhang, Xiaoming,Zhang, Dingchen,Feng, Zonghui,Wu, Xueping,Cai, Dianxiong,Jia, Shulong,Yang, Yunma,Meng, Chunxiang,Sun, Yanming,Grant, Cynthia.

[10]Diversity of Growth Habits and Their Association with VRN Allele of 81 American Wheat Lines. Ji Gui-su,Zhang Qing-jiang,Bai Gui-hua. 2010

[11]Identification and characterization of a high kernel weight mutant induced by gamma radiation in wheat (Triticum aestivum L.). Cheng, Xuejiao,Chai, Lingling,Chen, Zhaoyan,Xu, Lu,Zhai, Huijie,Peng, Huiru,Yao, Yingyin,You, Mingshan,Sun, Qixin,Ni, Zhongfu,Cheng, Xuejiao,Chai, Lingling,Chen, Zhaoyan,Xu, Lu,Zhai, Huijie,Peng, Huiru,Yao, Yingyin,You, Mingshan,Sun, Qixin,Ni, Zhongfu,Cheng, Xuejiao,Chai, Lingling,Chen, Zhaoyan,Xu, Lu,Zhai, Huijie,Peng, Huiru,Yao, Yingyin,You, Mingshan,Sun, Qixin,Ni, Zhongfu,Cheng, Xuejiao,Chai, Lingling,Chen, Zhaoyan,Xu, Lu,Zhai, Huijie,Peng, Huiru,Yao, Yingyin,You, Mingshan,Sun, Qixin,Ni, Zhongfu,Cheng, Xuejiao,Chai, Lingling,Chen, Zhaoyan,Xu, Lu,Zhai, Huijie,Peng, Huiru,Yao, Yingyin,You, Mingshan,Sun, Qixin,Ni, Zhongfu,Zhao, Aiju. 2015

[12]Cloning and characterization of the Na+/H+ antiport genes from Triticum aestivum. Wang, ZN,Zhang, JS,Guo, BH,He, SJ,Tian, AG,Chen, SY. 2002

[13]Transformation of wheat with a gene encoding for the betaine aldehyde dehydrogenase (BADH). Guo, BH,Zhang, YM,Li, HJ,Du, LQ,Li, YX,Zhang, JS,Chen, SY,Zhu, ZQ. 2000

[14]Involvement of calcium-calmodulin in the expression of hsp26 gene in wheat. Liu, HT,Zhao, H,Li, B,Sun, DY,Zhou, RG. 2001

[15]A procedure allowing up to eight generations of wheat and nine generations of barley per annum. Zheng, Z.,Chen, G. D.,Liu, C. J.,Zheng, Z.,Yan, G. J.,Zheng, Z.,Yan, G. J.,Zheng, Z.,Wang, H. B.,Chen, G. D..

[16]Enhancing Fusarium crown rot resistance by pyramiding large-effect QTL in common wheat (Triticum aestivum L.). Zheng, Zhi,Gao, Shang,Liu, Chunji,Zheng, Zhi,Zheng, Zhi,Yan, Guijun,Liu, Chunji,Gao, Shang,Zhou, Meixue,Gao, Shang,Zhou, Meixue.

[17]Wheat acclimate to water deficit by modifying carbohydrates metabolism, water use efficiency, and growth. Hu, MengYun,Li, Hui,Shi, ZhiGang,Xu, Ping,Zhang, Zhengbin.

[18]Effects of calmodulin on DNA-binding activity of heat shock transcription factor in vitro. Li, B,Liu, HT,Mu, RL,Sun, DY,Zhou, RG.

[19]Using Subtracted AFLP to Efficiently Mark an Alien Chromosome Fragment in Wheat Background. Chai, JF,Wu, ZM,Zhao, H,Laroche, A,Wang, HB.

作者其他论文 更多>>