您好,欢迎访问广东省农业科学院 机构知识库!

A large-scale field study of transgene flow from cultivated rice (Oryza sativa) to common wild rice (O-rufipogon) and barnyard grass (Echinochloa crusgalli)

文献类型: 外文期刊

作者: Wang, Feng 1 ; Yuan, Qian-Hua 1 ; Shi, Lei 1 ; Qian, Qian 2 ; Liu, Wu-Ge; Kuang, Ba-Geng; Zeng, Da-Li; Liao, Yi- 1 ;

作者机构: 1.Chinese Acad Agr Sci, Biotechnol Res Inst, Beijing 100081, Peoples R China; Guangdong Acad Agr Sci, Rice Res Inst, Guangzhou 51064, Peoples R China; Hainan Res & Dev Base Hybrid Rice & Transgen Crop, Sanya 572000, Peoples R China; Hainan Univ, Haikou 571228, Peoples R China; Chinese Acad Agr Sci, China Natl Res Inst, Hangzhou 310006, Peoples R China

2.Chinese Acad Agr Sci, Biotechnol Res Inst, Beijing 100081, Peoples R China; Guangdong Acad Agr Sci, Rice Res Inst, Guangzhou 51064, Peoples R China; Hainan Res & Dev Base Hybrid Rice & Transgen Crop, Sanya 572000, Peoples R China; Hainan Univ

关键词: barnyard grass;Echinochloa crusgalli;gene flow;Oryza rufipogon;Oryza sativa;rice

期刊名称:PLANT BIOTECHNOLOGY JOURNAL ( 影响因子:9.803; 五年影响因子:9.555 )

ISSN: 1467-7644

年卷期: 2006 年 4 卷 6 期

页码:

收录情况: SCI

摘要: The introgression of transgenes into wild relatives or weeds through pollen-mediated gene flow is a major concern in environmental risk assessment of transgenic crops. A large-scale (1.3-1.8 ha) rice gene flow study was conducted using transgenic rice containing the bar gene as a pollen donor and Oryza rufipogon as a recipient. There was a high frequency of transgene flow (11%-18%) at 0-1 m, with a steep decline with increasing distance to a detection limit of 0.01% by 250 m. To our knowledge, this is the highest frequency and longest distance of gene flow from transgenic rice to O. rufipogon reported so far. On the basis of these data, an adequate isolation distance from both conventional and transgenic rice should be taken for in situ conservation of common wild rice. Meanwhile, there is no evidence of transgene introgression into barnyard grass, even when it has coexisted with transgenic rice containing the bar gene for five successive years. Thus, the environmental risk of gene flow to this weedy species is of little concern.

  • 相关文献

[1]Genetic diversity within Oryza rufipogon germplasms preserved in Chinese field gene banks of wild rice as revealed by microsatellite markers. Zhang, Chi-Hong,Li, Dao-Yuan,Pan, Da-Jian,Jia, Ji-Zeng,Dong, Yu-Shen.

[2]Genome-wide multilocus analysis of intraspecific differentiation in Oryza rufipogon Griff. from China and the influence of introgression from O. sativa L.. Li, F.,Pei, X. W.,Jia, S. R.,Wang, F.,Yuan, Q. H.,Wu, H. J.,Peng, Y. F.. 2013

[3]Variation of the OsGI intron and its phenotypic associations in Oryza rufipogon Griff. and Oryza sativa L.. Chen, Z.,Pei, X.,Jia, S.,Wang, F.,Yuan, Q.,Wu, H.,Peng, Y.. 2013

[4]Genetic differentiation of Oryza ruffipogon Griff. from Hainan Island and Guangdong, China Based on Hd1 and Ehd1 genes. Pei, Xinwu,Jia, Shirong,Yuan, Qianhua,Wang, Feng,Wu, Hongjin,Peng, Yufa.

[5]Genetic Diversity in Loquat Germplasm Using SRAP and SSR Markers. Qiao, Yanchun,Zhang, Zhike,Gao, Yongshun,Liu, Chengming,Lin, Shunquan,Hong, Yanping,Guo, Dongliang.

[6]Genetic Diversity and Geographical Differentiation of Desmodium triflorum (L.) DC. in South China Revealed by AFLP Markers. Yue, Mao-feng,Zhou, Ren-chao,Huang, Ye-lin,Xin, Guo-rong,Shi, Su-hua,Yue, Mao-feng,Feng, Li.

[7]ESTABLISHMENT AND APPLICATION OF A SET OFBLAST IN RICE. Li Xiaofang,Luo Wenyong,Xiao Xin,Mao Xingxue,Liu Yanzhuo. 2001

[8]Involvement of Polyamine Oxidase-Produced Hydrogen Peroxide during Coleorhiza-Limited Germination of Rice Seeds. Chen, Bing-Xian,Li, Wen-Yan,Gao, Yin-Tao,Chen, Zhong-Jian,Zhang, Wei-Na,Liu, Qin-Jian,Chen, Zhuang,Liu, Jun. 2016

[9]Reactive Oxygen Species Generated by NADPH Oxidases Promote Radicle Protrusion and Root Elongation during Rice Seed Germination. Li, Wen-Yan,Chen, Bing-Xian,Chen, Zhong-Jian,Gao, Yin-Tao,Chen, Zhuang,Liu, Jun. 2017

[10]Biodiversity of Asian rice gall midge (Orseolia oryzae Wood Mason) from five countries examined by AFLP analysis. Katiyar, SK,Chandel, G,Tan, Y,Zhang, Y,Huang, B,Nugaliyadde, L,Fernando, K,Bentur, JS,Inthavong, S,Constantino, S,Bennett, J. 2000

[11]Application of ordered differential display to isolate rice cDNAs induced by Magnaporthe grisea. Luo, WY,Li, XF,Hu, J,Liu, WH,Xiao, X,Liu, LS. 2004

[12]Genetic effects on grain characteristics of indica black rice and their uses on indirect selections for some mineral element contents in grains. Zhang, MW,Guo, BJ,Peng, ZM. 2005

[13]Development of a GFP-expressing Ustilaginoidea virens strain to study fungal invasion and colonization in rice spikelets. Andargie, Mebeaselassie,Li, Luoye,Li, Jianxiong,Feng, Aiqing,Zhu, Xiaoyuan.

[14]Transgene flow to hybrid rice and its male-sterile lines. Jia, Shirong,Wang, Feng,Shi, Lei,Yuan, Qianhua,Liu, Wuge,Liao, Yilong,Li, Shuguang,Jin, Wujun,Peng, Huipu. 2007

[15]The germin-like protein OsGLP2-1 enhances resistance to fungal blast and bacterial blight in rice. Liu, Qing,Zhang, Shaohong,Zhao, Junliang,Yang, Tifeng,Wang, Xiaofei,Mao, Xingxue,Dong, Jingfang,Liu, Bin,Liu, Qing,Zhang, Shaohong,Zhao, Junliang,Yang, Tifeng,Wang, Xiaofei,Mao, Xingxue,Dong, Jingfang,Liu, Bin,Yang, Jianyuan,Wang, Wenjuan,Zhu, Xiaoyuan,Yan, Shijuan.

[16]Disruption of Secondary Wall Cellulose Biosynthesis Alters Cadmium Translocation and Tolerance in Rice Plants. Song, Xue-Qin,Liu, Li-Feng,Zhang, Bao-Cai,Gao, Ya-Ping,Liu, Xiang-Ling,Zhou, Yi-Hua,Jiang, Yi-Jun,Lin, Qing-Shan,Ling, Hong-Qing. 2013

[17]SWATH-MS Quantitative Analysis of Proteins in the Rice Inferior and Superior Spikelets during Grain Filling. Zhu, Fu-Yuan,Xu, Xuezhong,Peng, Xinxiang,Zhu, Guohui,Zhu, Fu-Yuan,Chen, Mo-Xian,Ye, Neng-Hui,Liu, Tie-Yuan,Li, Hao-Xuan,Wang, Guan-Qun,Jin, Yu,Zhang, Jianhua,Zhu, Fu-Yuan,Ye, Neng-Hui,Zhang, Jianhua,Su, Yu-Wen,Cao, Yun-Ying,Lin, Sheng,Gu, Yong-Hai,Chan, Wai-Lung,Lo, Clive. 2016

[18]Genetic analysis and pyramiding of two gall midge resistance genes (Gm-2 and Gm-6t) in rice (Oryza sativa L.). Katiyar, S,Verulkar, S,Chandel, G,Zhang, Y,Huang, B,Bennett, J. 2001

[19]Improving nitrogen fertilization in rice by site-specific N management. A review. Peng, Shaobing,Buresh, Roland J.,Dobermann, Achim,Huang, Jianliang,Cui, Kehui,Zhong, Xuhua,Zou, Yingbin,Tang, Qiyuan,Yang, Jianchang,Wang, Guanghuo,Liu, Yuanying,Hu, Ruifa,Zhang, Fusuo. 2010

[20]Quantifying the interactive effect of leaf nitrogen and leaf area on tillering of rice. Zhong, XH,Peng, SB,Sanico, AL,Liu, HX. 2003

作者其他论文 更多>>