您好,欢迎访问贵州省农业科学院 机构知识库!

Cross-Talk between Transcriptome Analysis and Physiological Characterization Identifies the Genes in Response to the Low Phosphorus Stress in Malus mandshurica

文献类型: 外文期刊

作者: Zhao, Hong 1 ; Wu, Yawei 2 ; Shen, Luonan 3 ; Hou, Qiandong 1 ; Wu, Rongju 1 ; Li, Zhengchun 3 ; Deng, Lin 3 ; Wen, Xiaopeng 1 ;

作者机构: 1.Guizhou Univ, Inst Agrobioengn, Coll Life Sci, Minist Educ,Key Lab Plant Resource Conservat & Ge, Guiyang 550025, Peoples R China

2.Guizhou Acad Agr Sci, Inst Pomol Sci, Guiyang 550006, Peoples R China

3.Guizhou Univ, Coll Forestry, Inst Forest Resources & Environm Guizhou, Guiyang 550025, Peoples R China

关键词: Malus mandshurica; physiological character; transcriptome analysis; low-Pi stress; Pi transporter

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:6.208; 五年影响因子:6.628 )

ISSN:

年卷期: 2022 年 23 卷 9 期

页码:

收录情况: SCI

摘要: Phosphorus (Pi) is a macronutrient essential for plant growth, development, and reproduction. However, there is not an efficient available amount of Pi that can be absorbed by plants in the soil. Previously, an elite line, MSDZ 109, selected from Malus mandshurica, was justified for its excellent tolerance to low phosphorus (low-Pi) stress. To date, however, the genes involved in low-Pi stress tolerance have not yet been unraveled in this species. Currently, the physiological responses of this line for different days to low-Pi stress were characterized, and their roots as well as leaves were used to carry out transcriptome analysis, so as to illuminate the potential molecular pathways and identify the genes involved in low-Pi stress-response. After exposure to low-Pi treatment (32 mu mol/L KH2PO4) for 20 day after treatment (DAF) the biomass of shoots was significantly reduced in comparison with that of the stress-free (control), and root architecture diversely changed. For example, the root growth parameters e.g., length, surface area, and total volume somewhat increase in comparison with those of the control. The activity of acid phosphatase (ACP) increased with the low-Pi treatment, whereas the photosynthetic rate and biomass were declining. The activity of antioxidant enzymes, e.g., superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), were substantially elevated in response to low-Pi treatment. Many enzyme-related candidate genes e.g., MmCAT1, MmSOD1 and MmPOD21 were up-regulated to low-Pi treatment. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the processes of photosynthesis, plant hormone signal transduction, and MAPK signaling pathway were affected in the low-Pi response. In combination with the physiological characterization, several low-Pi-responsive genes, e.g., PHT, PHO, were identified, and the genes implicated in Pi uptake and transport, such as MmPHT1;5, MmPHO1, MmPAP1, etc., were also obtained since their expression status varied among the exposure times, which probably notifies the candidates involved in low-Pi-responsive tolerance in this line. Interestingly, low-Pi treatment activated the expression of transcription factors including the WRKY family, MYB family, etc. The available evidences will facilitate a better understanding of the roles of this line underlying the high tolerance to low-Pi stress. Additionally, the accessible data are helpful for the use of the apple rootstock M. mandshurica under low-Pi stress.

  • 相关文献
作者其他论文 更多>>