Forecasting Alternaria Leaf Spot in Apple with Spatial-Temporal Meteorological and Mobile Internet-Based Disease Survey Data
文献类型: 外文期刊
作者: Huang, Yujuan 1 ; Zhang, Jingcheng 1 ; Zhang, Jingwen 1 ; Yuan, Lin 2 ; Zhou, Xianfeng 1 ; Xu, Xingang 3 ; Yang, Guijun 1 ;
作者机构: 1.Hangzhou Dianzi Univ, Coll Artificial Intelligence, Hangzhou 310018, Peoples R China
2.Zhejiang Univ Water Resources & Elect Power, Sch Informat Engn & Art & Design, Hangzhou 310018, Peoples R China
3.Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
关键词: apple Alternaria leaf spot; disease forecasting model; web-based disease survey data; meteorological factors; data clean approach
期刊名称:AGRONOMY-BASEL ( 影响因子:3.949; 五年影响因子:4.117 )
ISSN:
年卷期: 2022 年 12 卷 3 期
页码:
收录情况: SCI
摘要: Early warning of plant diseases and pests is critical to ensuring food safety and production for economic crops. Data sources such as the occurrence, frequency, and infection locations are crucial in forecasting plant diseases and pests. However, at present, acquiring such data relies on fixed-point observations or field experiments run by agricultural institutions. Thus, insufficient data and low rates of regional representative are among the major problems affecting the performance of forecasting models. In recent years, the development of mobile internet technology and conveniently accessible multi-source agricultural information bring new ideas to plant diseases' and pests' forecasting. This study proposed a forecasting model of Alternaria Leaf Spot (ALS) disease in apple that is based on mobile internet disease survey data and high resolution spatial-temporal meteorological data. Firstly, a mobile internet-based questionnaire was designed to collect disease survey data efficiently. A specific data clean procedure was proposed to mitigate the noise in the data. Next, a sensitivity analysis was performed on the temperature and humidity data, to identify disease-sensitive meteorological factors as model inputs. Finally, the disease forecasting model of the apple ALS was established using four machine learning algorithms: Logistic regression(LR); Fisher linear discriminant analysis(FLDA); Support vector machine(SVM); and K-Nearest Neighbors (KNN). The KNN algorithm is recommended in this study, which produced an overall accuracy of 88%, and Kappa of 0.53. This paper shows that through mobile internet disease survey and a proper data clean approach, it is possible to collect necessary data for disease forecasting in a short time. With the aid of high resolution spatial-temporal meteorological data and machine learning approaches, it is able to achieve disease forecast at a regional scale, which will facilitate efficient disease prevention practices.
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal
-
A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation
作者:Zhao, Dan;Xu, Tongyu;Yang, Hao;Zhang, Chengjian;Cheng, Jinpeng;Yang, Guijun;Henke, Michael
关键词:3D maize canopy scene; Functional-structural model; Canopy structure; 3D radiative transfer; Spectral response
-
Analyzing winter-wheat biochemical traits using hyperspectral remote sensing and deep learning
作者:Yue, Jibo;Wang, Jian;Guo, Wei;Ma, Xinming;Qiao, Hongbo;Yang, Guijun;Liu, Yang;Feng, Haikuan;Yue, Jibo;Yang, Guijun;Li, Changchun;Niu, Qinglin;Feng, Haikuan
关键词:Unmanned aerial vehicle; Transfer learning; Deep learning; Hyperspectral
-
Overridingly increasing vegetation sensitivity to vapor pressure deficit over the recent two decades in China
作者:Liu, Miao;Yang, Guijun;Li, Zhenhong;Gao, Meiling;Yang, Yun;Liu, Miao;Yang, Guijun;Long, Huiling;Meng, Yang;Hu, Haitang;Li, Heli;Yuan, Wenping;Li, Changchun;Yuan, Zhanliang;Meng, Yang
关键词:Vapor pressure deficit (VPD); Aridity index (AI); EVI; NIRv; Vegetation; Sensitivity