GmPBS1, a Hub Gene Interacting with Rhizobial Type-III Effectors NopT and NopP, Regulates Soybean Nodulation
文献类型: 外文期刊
作者: Li, Dongdong 1 ; Zhu, Zikun 1 ; Deng, Xiaomin 1 ; Zou, Jianan 1 ; Ma, Chao 1 ; Li, Candong 2 ; Yin, Tao 3 ; Liu, Chunyan 1 ; Wang, Jinhui 1 ; Chen, Qingshan 1 ; Xin, Dawei 1 ;
作者机构: 1.Northeast Agr Univ, Coll Agr, Changjiang Rd 600, Harbin 150030, Peoples R China
2.Heilongjiang Acad Agr Sci, Jiamusi Branch Inst, Jiamusi 154002, Peoples R China
3.Sinochem Modern Agr Heilongjiang Co Ltd, Harbin 150028, Peoples R China
关键词: soybean; symbiotic nitrogen fixation; the type-III secretion system; NopT; NopP; GmPBS1
期刊名称:AGRONOMY-BASEL ( 影响因子:3.7; 五年影响因子:4.0 )
ISSN:
年卷期: 2023 年 13 卷 5 期
页码:
收录情况: SCI
摘要: Soybean is a legume crop rich in protein and oil. Symbiotic nitrogen fixation plays an important role in the growth of soybean. The type-III effectors such as NopT and NopP are the important signaling factors for the establishment of symbiosis in soybean. In this study, the analysis of nodulation in soybean after inoculation with HH103?NopT, HH103?NopP, and HH103?NopT&NopP indicated crosstalking between NopT and NopP. Further, we aimed to identify the genes of soybean involved in the pathway underlying the crosstalk between NopT and NopP using RNA-seq analysis. Five of the identified candidate genes were confirmed to be induced by NopT and NopP. The expression of GmPBS1 significantly increased to a much larger extent than that of the other four genes after soybean was inoculated with HH103?NopT, HH103ONopP, or HH103?NopT&NopP. The interaction between NopT and GmPBS1 was confirmed via bimolecular fluorescence complementation. Finally, nodulation analysis after GmPBS1 overexpression in the hairy roots indicate that GmPBS1 can regulate the negative effect of NopP on the nodulation, and this regulation is related to NopT. Collectively, our results suggested that during the nodulation in soybean, NopT and NopP have a crosstalking network and GmPBS1 is the hub gene.
- 相关文献
作者其他论文 更多>>
-
Genome-Wide Identification of GmPIF Family and Regulatory Pathway Analysis of GmPIF3g in Different Temperature Environments
作者:Liang, Xuefeng;Zhao, Caitong;Cui, Jiayang;Chen, Qingshan;Yang, Mingliang;Jiang, Zhenfeng;Liu, Zhihua;Han, Dezhi
关键词:soybean; PIF; bioinformatics analysis; biofilm interference; interacting protein
-
Comparative Metabolomics Analysis of Seed Composition Accumulation in Soybean (Glycine max L.) Differing in Protein and Oil Content
作者:Cui, Yifan;Wang, Zhiyang;Li, Mingyang;Wang, Sihui;Liu, Chunyan;Xin, Dawei;Qi, Zhaoming;Chen, Qingshan;Yang, Mingliang;Zhao, Ying;Li, Xin
关键词:metabolomics; seed oil; seed protein; soybean (Glycine max (Linn.) Merr.)
-
Lactylome Profiling Reveals the Potential Role of Lysine Lactylation in Regulating Soybean Seed Quality
作者:Xu, Chang;Li, Jun;Dong, Chang;Zhang, Yu;Li, Hui;Li, Tianshu;Han, Xue;Yang, Mingliang;Chen, Qingshan;Qi, Zhaoming;Song, Zhen;Zhang, Mingming;Li, Candong
关键词:lysine lactylation; soybean; seedoil content; seed protein content; metabolism pathways
-
Genome-wide characterization of soybean malate dehydrogenase genes reveals a positive role for GmMDH2 in the salt stress response
作者:Liu, Peiyan;Cui, Yifan;Wu, Xiaoxia;Zhao, Ying;Hu, Zhenbang;Liu, Chunyan;Zhang, Zhanguo;Yang, Mingliang;Chen, Qingshan;Li, Xin
关键词:soybean ( Glycine max (Linn.) Merr.); malate dehydrogenase; expression profile; salt stress
-
Genome-Wide Characterization and Haplotype Module Stacking Analysis of the KTI Gene Family in Soybean (Glycine max L. Merr.)
作者:Tian, Huilin;Zhang, Zhanguo;Feng, Shaowei;Song, Jia;Han, Xue;Chen, Xin;Yang, Mingliang;Chen, Qingshan;Wu, Xiaoxia;Qi, Zhaoming;Zhang, Zhanguo;Li, Candong;Liu, Enliang;Xu, Linli
关键词:kunitz trypsin inhibitor; seed storage protein content; paralogous genes; haplotype module stacking; soybean
-
Trans-2-pentenal suppresses potato common scab via dual inhibition of thiamine and energy metabolism in Streptomyces scabies
作者:Liu, Haixu;Shi, Ke;Zhang, Lili;Chen, Yufei;Xin, Dawei;Shi, Ying;Li, Qingquan;Zhang, Yan
关键词:potato common scab; Streptomyces scabies; Streptomyces enissocaesilis; volatile organic compounds; thiamine metabolism; trans-2-pentenal
-
Wild rodents seed choice is relevant for sustainable agriculture
作者:Peng, Yang;Hu, Zhenbang;Dong, Wen;Wu, Xiaodong;Liu, Chunyan;Zhu, Rongsheng;Wang, Jinhui;Yang, Mingliang;Qi, Zhaoming;Zhao, Ying;Zou, Jianan;Wu, Xiaoxia;Hu, Limin;Chen, Qingshan;Xin, Dawei;Ratet, Pascal;Xin, Dawei;Ratet, Pascal;Xin, Dawei;Bi, Yingdong
关键词:



