Regionally Compatible Individual Tree Growth Model under the Combined Influence of Environment and Competition
文献类型: 外文期刊
作者: Zhang, Wenjie 1 ; Wu, Baoguo 1 ; Ren, Yi 5 ; Yang, Guijun 2 ;
作者机构: 1.Beijing Forestry Univ, Sch Informat Sci & Technol, Beijing 100083, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R China
3.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
4.Beijing Forestry Univ, Forestry Informat Res Inst, Beijing 100083, Peoples R China
5.Acad Forestry Inventory & Planning, Beijing 100714, Peoples R China
关键词: regionally compatible; competition; environmental factors; individual tree growth
期刊名称:PLANTS-BASEL ( 影响因子:4.5; 五年影响因子:4.8 )
ISSN:
年卷期: 2023 年 12 卷 14 期
页码:
收录情况: SCI
摘要: To explore the effects of competition, site, and climate on the growth of Chinese fir individual tree diameter at breast height (DBH) and tree height (H), a regionally compatible individual tree growth model under the combined influence of environment and competition was constructed. Using continuous forest inventory (CFI) sample plot data from Fujian Province between 1993 and 2018, we constructed an individual tree DBH model and an H model based on re-parameterization (RP), BP neural network (BP), and random forest (RF), which compared the accuracy of the different modeling methods. The results showed that the inclusion of competition and environmental factors could improve the prediction accuracy of the model. Among the site factors, slope position (PW) had the most significant effect, followed by elevation (HB) and slope aspect (PX). Among the climate factors, the highest contribution was made by degree-days above 18 & DEG;C (DD18), followed by mean annual precipitation (MAP) and Hargreaves reference evaporation (Eref). The comparison results of the three modeling methods show that the RF model has the best fitting effect. The R-2 of the individual DBH model based on RF is 0.849, RMSE is 1.691 cm, and MAE is 1.267 cm. The R-2 of the individual H model based on RF is 0.845, RMSE is 1.267 m, and MAE is 1.153 m. The model constructed in this study has the advantages of environmental sensitivity, statistical reliability, and prediction efficiency. The results can provide theoretical support for management decision-making and harvest prediction of mixed uneven-aged forest.
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal
-
A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation
作者:Zhao, Dan;Xu, Tongyu;Yang, Hao;Zhang, Chengjian;Cheng, Jinpeng;Yang, Guijun;Henke, Michael
关键词:3D maize canopy scene; Functional-structural model; Canopy structure; 3D radiative transfer; Spectral response
-
Analyzing winter-wheat biochemical traits using hyperspectral remote sensing and deep learning
作者:Yue, Jibo;Wang, Jian;Guo, Wei;Ma, Xinming;Qiao, Hongbo;Yang, Guijun;Liu, Yang;Feng, Haikuan;Yue, Jibo;Yang, Guijun;Li, Changchun;Niu, Qinglin;Feng, Haikuan
关键词:Unmanned aerial vehicle; Transfer learning; Deep learning; Hyperspectral
-
Overridingly increasing vegetation sensitivity to vapor pressure deficit over the recent two decades in China
作者:Liu, Miao;Yang, Guijun;Li, Zhenhong;Gao, Meiling;Yang, Yun;Liu, Miao;Yang, Guijun;Long, Huiling;Meng, Yang;Hu, Haitang;Li, Heli;Yuan, Wenping;Li, Changchun;Yuan, Zhanliang;Meng, Yang
关键词:Vapor pressure deficit (VPD); Aridity index (AI); EVI; NIRv; Vegetation; Sensitivity