Simulation of high-resolution mid-infrared (3-5 mu m) images using an atmosphere radiative transfer analytic model
文献类型: 外文期刊
作者: Yang, Guijun 1 ; Liu, Qinhuo 2 ; Liu, Qiang 2 ; Huang, Wenjiang 1 ; Wang, Jihua 1 ;
作者机构: 1.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
2.Chinese Acad Sci, Inst Remote Sensing Applicat, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
3.Beijing Normal Univ, Beijing 100101, Peoples R China
期刊名称:INTERNATIONAL JOURNAL OF REMOTE SENSING ( 影响因子:3.151; 五年影响因子:3.266 )
ISSN: 0143-1161
年卷期: 2009 年 30 卷 22 期
页码:
收录情况: SCI
摘要: Futuremid-infrared satellite missions exploring the Earth will feature advanced high spatial resolution and directional imaging instruments. Consistent end-to-end simulation of them is an important task, and is sometimes the only way to adapt and optimize a sensor and its observation conditions, to choose and test algorithms for data processing, to estimate errors and to evaluate the capabilities of the whole sensor system. However, contrary to other wavelength ranges, the mid-infrared is highly dependent on atmospheric scattering and emission. Therefore, simulation of atmospheric radiative transfer for remote sensing images will remain a challenging task, because few studies on this topic include a full treatment of atmospheric effects. With a given resolution and directional capabilities of the instrument, and combining with land surface temperature and emissivity data obtained from airborne imagery, TOA (top of atmosphere) radiance images have been simulated pixel by pixel, coupling the atmospheric radiative transfer analytic model extended from MODTRAN4 and the atmospheric adjacency effect model derived from point spread function (for atmospheric directional and adjacency effect). In this way, all major scattering and emission contributions of atmosphere were considered. Based on different atmospheric conditions and geometrical relations between the scene, the Sun and the sensor, simulated TOA radiance images were produced according to simulated workflows, 10-m spatial resolution and a spectral range of 3.5-3.9 mu m. Analysis of results indicates that the analytic model and adjacency effect model are more suitable for mid-infrared imaging simulation than other existing models. This paper describes the principle of the two models, the applied methodology, the set-up of the actual image simulations, and then discusses the final results obtained.
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal
-
A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation
作者:Zhao, Dan;Xu, Tongyu;Yang, Hao;Zhang, Chengjian;Cheng, Jinpeng;Yang, Guijun;Henke, Michael
关键词:3D maize canopy scene; Functional-structural model; Canopy structure; 3D radiative transfer; Spectral response
-
Analyzing winter-wheat biochemical traits using hyperspectral remote sensing and deep learning
作者:Yue, Jibo;Wang, Jian;Guo, Wei;Ma, Xinming;Qiao, Hongbo;Yang, Guijun;Liu, Yang;Feng, Haikuan;Yue, Jibo;Yang, Guijun;Li, Changchun;Niu, Qinglin;Feng, Haikuan
关键词:Unmanned aerial vehicle; Transfer learning; Deep learning; Hyperspectral
-
Overridingly increasing vegetation sensitivity to vapor pressure deficit over the recent two decades in China
作者:Liu, Miao;Yang, Guijun;Li, Zhenhong;Gao, Meiling;Yang, Yun;Liu, Miao;Yang, Guijun;Long, Huiling;Meng, Yang;Hu, Haitang;Li, Heli;Yuan, Wenping;Li, Changchun;Yuan, Zhanliang;Meng, Yang
关键词:Vapor pressure deficit (VPD); Aridity index (AI); EVI; NIRv; Vegetation; Sensitivity



