Monitoring of Winter Wheat Stripe Rust Based on the Spectral Knowledge Base for TM Images
文献类型: 外文期刊
作者: Zhang Jing-cheng 1 ; Li Jian-yuan 2 ; Yang Gui-jun 2 ; Huang Wen-jiang 2 ; Luo Ju-hua 2 ; Wang Ji-hua 1 ;
作者机构: 1.Zhejiang Univ, Inst Agr Remote Sensing & Informat Syst Applicat, Hangzhou 310029, Zhejiang, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
3.Tongji Univ, Sch Elect & Informat Engn, Shanghai 201800, Peoples R China
关键词: Stripe rust; Pushbroom hyperspectral imager(PHI); Thematic mapper(TM); Mahalanobis distance; Spectral angle mapping(SAM)
期刊名称:SPECTROSCOPY AND SPECTRAL ANALYSIS ( 影响因子:0.589; 五年影响因子:0.504 )
ISSN: 1000-0593
年卷期: 2010 年 30 卷 6 期
页码:
收录情况: SCI
摘要: In most cases, the reversion model for monitoring the severity degree of stripe rust based on the hyperspectral information can not be directly applied by the satellite images with relatively broad bandwidth, while the airborne hyperspectral images can not be applied for large-scale monitoring either, due to the scale limitation of its data and high cost. For resolving this dilemma, we developed a monitoring method based on PHI images, which relies on the construction of spectral knowledge base of winter wheat stripe rust. Three PHI images corresponding to the winter wheat experimental field that included different severity degree of stripe rust were used as a medium to establish the spectral knowledge base of relationships between disease index (DI) and the simulated reflectance of TM bands by using the empirical reversion model of DI(%) and the relative spectral response (RSR) function of TM-5 sensor. Based on this, we can monitor and identify the winter wheat stripe rust by matching the spectral information of an untested pixel to the spectral knowledge base via Mahalanobis distance or spectral angle mapping (SAM). The precision of monitoring was validated by simulated TM pixels, while the effectiveness of identification was tested by pixels from TM images. The results showed that the method can provide high precision for monitoring and reasonable accuracy for identification in some certain growth stages of winter wheat. Based on the simulated TM pixels, the model performed best in the pustulation period, yielded a coefficient of determination R-2 = 0.93, while the precision of estimates dropped in the milk stage, and performed worst in the jointing stage, which is basically inappropriate for monitoring. Moreover, by using the pixels from TM images, the infected pixels could be identified accurately in pustulation and milk stages, while failed to be identified in jointing stage. For matching algorithms, the Mahalanobis distance method produced a slightly better result than SAM method.
- 相关文献
作者其他论文 更多>>
-
Estimation of Potato Above-Ground Biomass Based on VGC-AGB Model and Hyperspectral Remote Sensing
作者:Feng Hai-kuan;Zhao Chun-jiang;Feng Hai-kuan;Fan Yi-guang;Yang Gui-jun;Zhao Chun-jiang;Yue Ji-bo
关键词:VGC-AGB model; Hyperspectral remote sensing; Potato; Aboveground biomass (AGB)
-
Monitoring of Nitrogen Content in Winter Wheat Based on UAV Hyperspectral Imagery
作者:Feng Hai-kuan;Fan Yi-guang;Tao Hui-lin;Yang Gui-jun;Zhao Chun-jiang;Feng Hai-kuan;Zhao Chun-jiang;Yang Fu-qin
关键词:Unmanned aerial vehicle; Winter wheat; Hyperspectral; Nitrogen content; Stepwise regression; Spectral feature parameters
-
Estimation of Potato Plant Nitrogen Content Based on UAV Hyperspectral Imaging
作者:Fan Yi-guang;Feng Hai-kuan;Liu Yang;Long Hui-ling;Yang Gui-jun;Feng Hai-kuan;Fan Yi-guang;Feng Hai-kuan;Liu Yang;Long Hui-ling;Yang Gui-jun;Liu Yang;Fan Yi-guang;Qian Jian-guo
关键词:UAV; Potato; Hyperspectral; Image features; Plant nitrogen content
-
Estimation of Nitrogen Content in Potato Plants Based on Spectral Spatial Characteristics
作者:Fan Yi-guang;Feng Hai-kuan;Liu Yang;Bian Ming-bo;Zhao Yu;Yang Gui-jun;Feng Hai-kuan;Fan Yi-guang;Feng Hai-kuan;Liu Yang;Bian Ming-bo;Zhao Yu;Yang Gui-jun;Liu Yang;Fan Yi-guang;Qian Jian-guo
关键词:Unmanned aerial vehicle; Potato; Plantnitrogen content; Vegetation indices; High frequency information
-
Estimation of Potato Plant Nitrogen Content Using UAV Multi-Source Sensor Information
作者:Fan Yi-guang;Feng Hai-kuan;Liu Yang;Bian Ming-bo;Zhao Yu;Yang Gui-jun;Feng Hai-kuan;Fan Yi-guang;Feng Hai-kuan;Liu Yang;Bian Ming-bo;Zhao Yu;Yang Gui-jun;Liu Yang;Fan Yi-guang;Qian Jian-guo
关键词:Plant nitrogen content; UAV; Multi-source sensor; Green edge; Plant height; Coverage
-
Estimation of Chlorophyll Content in Winter Wheat Based on UAV Hyperspectral
作者:Feng Hai-kuan;Tao Hui-lin;Zhao Yu;Fan Yi-guang;Yang Gui-jun;Feng Hai-kuan;Yang Fu-qin
关键词:Winter wheat; Chlorophyll content; Vegetation index; Red edge parameter; Partial least squares regression
-
Estimation of Potato Above Ground Biomass Based on UAV Multispectral Images
作者:Liu Yang;Sun Qian;Feng Hai-kuan;Wang Jiao-jiao;Yang Gui-jun;Liu Yang;Huang Jue;Feng Hai-kuan;Liu Yang;Sun Qian;Feng Hai-kuan;Wang Jiao-jiao;Yang Gui-jun
关键词:Potato; Multispectral; Plant height; Vegetation indices; High frequency information; Above ground biomass



