Winter Wheat Growth Spatial Variation Study Based on Temporal Airborne High-Spectrum Images
文献类型: 外文期刊
作者: Song Xiao-yu 1 ; Wang Ji-hua 1 ; Yan Guang-jian 2 ; Huang Wen-jiang 1 ; Liu Liang-yun 4 ;
作者机构: 1.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
2.Beijing Normal Univ, Coll Geog, Res Ctr Remote Sensing, Beijing 100875, Peoples R China
3.Beijing Normal Univ, GIS, Beijing 100875, Peoples R China
4.Chinese Acad Sci, Ctr Earth Observat & Digital Earth, Beijing 100190, Peoples R China
关键词: Pushbroom hyperspectral imager (PHI); Variable-rate fertilization; Spectrum parameter; Winter wheat; Spatial variation
期刊名称:SPECTROSCOPY AND SPECTRAL ANALYSIS ( 影响因子:0.589; 五年影响因子:0.504 )
ISSN: 1000-0593
年卷期: 2010 年 30 卷 7 期
页码:
收录情况: SCI
摘要: Precision agriculture technology is defined as an information-and technology-based agriculture management system to identify, analyze and manage crop spatial and temporal variation within fields for optimum profitability, sustainability and protection of the environment. In the present study, push-broom hyperspectral image sensor (PHI) image was used to investigate the spatial variance of winter wheat growth. The variable-rate fertilization contrast experiment was carried out on the National Experimental Station for Precision Agriculture of China during 2001-2002. Three airborne PHI images were acquired during the wheat growth season of 2002. Then contrast analysis about the wheat growth spatial variation was applied to the variable-rate fertilization area and uniformity fertilization area. The results showed that the spectral reflectance standard deviation increased significantly in red edge and short infrared wave band for all images. The wheat milky stage spectral reflectance has the maximum standard deviation in short infrared wave band, then the wheat jointing stage and wheat filling stage. Then six spectrum parameters that sensitive to wheat growth variation were defined and analyzed. The results indicate that parameters spatial variation coefficient for variable-rate experiment area was higher than that of contrast area in jointing stage. However, it decreased after the variable-rate fertilization application. The parameters spatial variation coefficient for variable-rate area was lower than that of contrast area in filling and milking stages. In addition, the yield spatial variation coefficient for variable-rate area was lower than that of contrast area. However, the yield mean value for variable-rate area was lower than that of contrast area. The study showed that the crop growth spatial variance information can be acquired through airborne remote sensing images timely and exactly. Remote sensing technology has provided powerful analytical tools for precision agriculture variable-rate management.
- 相关文献
作者其他论文 更多>>
-
Monitoring Nitrogen Nutrition and Grain Protein Content of Rice Based on Ensemble Learning
作者:Zhang Jie;Xu Bo;Feng Hai-kuan;Wang Jiao-jiao;Ming Shi-kang;Song Xiao-yu;Zhang Jie;Jing Xia;Fu You-qiang
关键词:Hyperspectral remote sensing; Rice grain protein; Machine Learning; Ensemble algorithms; Adaboost; Random forest
-
Comparison of Machine Learning Algorithms for Remote Sensing Monitoring of Rice Yields
作者:Jing Xia;Zhang Jie;Zhang Jie;Wang Jiao-jiao;Ming Shi-kang;Feng Hai-kuan;Song Xiao-yu;Fu You-qiang
关键词:Hyperspectral remote sensing; Rice yield estimation; Bayesian ridge regression; Support vector regression
-
Sensitive Bands Selection and Nitrogen Content Monitoring of Rice Based on Gaussian Regression Analysis
作者:Wang Jiao-jiao;Song Xiao-yu;Yang Gui-jun;Li Zhen-hai;Li He-li;Meng Yang;Wang Jiao-jiao;Mei Xin
关键词:Sensitive band; Nitrogen; Gaussian progresses regression (GPR); Random forest (RF); Support vector regression (SVR); Hyperspectral
-
Study on the Predication Modeling of COD for Water Based on UV-VIS Spectroscopy and CNN Algorithm of Deep Learning
作者:Jia Wen-shen;Liang Gang;Wang Ji-hua;Jia Wen-shen;Zhang Heng-zhi;Ma Jie;Liu Xin;Jia Wen-shen;Liang Gang;Wang Ji-hua;Jia Wen-shen;Liang Gang;Wang Ji-hua
关键词:Ultraviolet visible spectrum; Convolution neural network; Chemical oxygen demand; Prediction model
-
Global sensitivity analysis of wheat grain yield and quality and the related process variables from the DSSAT-CERES model based on the extended Fourier Amplitude Sensitivity Test method
作者:Li Zhen-hai;Li Zhen-hai;Xu Xin-gang;Jin Xiu-liang;Liu Hai-long;Wang Ji-hua
关键词:global sensitivity analysis; DSSAT; EFAST; wheat; yield; grain protein content
-
Leaf chlorophyll content retrieval of wheat by simulated RapidEye, Sentinel-2 and EnMAP data
作者:Cui Bei;Zhao Qian-jun;Huang Wen-jiang;Ye Hui-chun;Cui Bei;Cui Bei;Huang Wen-jiang;Ye Hui-chun;Song Xiao-yu;Zhou Xian-feng
关键词:leaf chlorophyll content; RapidEye; Sentinel-2; EnMAP; red-edge band
-
Design and Implementation of National Standard Grade I Water Purification System Based on UV-Vis
作者:Zhang Heng-zhi;Ma Jie;Jia Wen-shen;Jia Wen-shen;Wang Ji-hua;Jia Wen-shen;Wang Ji-hua
关键词:UV-Vis; Grade I water; Purification system; Multiple parameter



