Efficient Stereo Visual Simultaneous Localization and Mapping for an Autonomous Unmanned Forklift in an Unstructured Warehouse
文献类型: 外文期刊
作者: Wang, Feiren 1 ; Lu, Enli 1 ; Wang, Yu 1 ; Qiu, Guangjun 2 ; Lu, Huazhong 2 ;
作者机构: 1.South China Agr Univ, Coll Engn, Guangzhou 510642, Peoples R China
2.Guangdong Acad Agr Sci, Guangzhou 510640, Peoples R China
关键词: stereo vision; SLAM; autonomous navigation; forklift
期刊名称:APPLIED SCIENCES-BASEL ( 影响因子:2.679; 五年影响因子:2.736 )
ISSN:
年卷期: 2020 年 10 卷 2 期
页码:
收录情况: SCI
摘要: The autonomous navigation of unmanned vehicles in GPS denied environments is an incredibly challenging task. Because cameras are low in price, obtain rich information, and passively sense the environment, vision based simultaneous localization and mapping (VSLAM) has great potential to solve this problem. In this paper, we propose a novel VSLAM framework based on a stereo camera. The proposed approach combines the direct and indirect method for the real-time localization of an autonomous forklift in a non-structured warehouse. Our proposed hybrid method uses photometric errors to perform image alignment for data association and pose estimation, extracts features from keyframes, and matches them to acquire the updated pose. By combining the efficiency of the direct method and the high accuracy of the indirect method, the approach achieves higher speed with comparable accuracy to a state-of-the-art method. Furthermore, the two step dynamic threshold feature extraction method significantly reduces the operating time. In addition, a motion model of the forklift is proposed to provide a more reasonable initial pose for direct image alignment based on photometric errors. The proposed algorithm is experimentally tested on a dataset constructed from a large scale warehouse with dynamic lighting and long corridors, and the results show that it can still successfully perform with high accuracy. Additionally, our method can operate in real time using limited computing resources.
- 相关文献
作者其他论文 更多>>
-
Nondestructive detection of Clonorchis sinensis infection of raw Pseudorasbora parva fish by near-infrared hyperspectral imaging
作者:Xu, Sai;Lu, Huazhong;Liang, Xin;He, Zhenhui;Lu, Huazhong;Xu, Sai;Lu, Huazhong
关键词:Pseudorasbora parva; Clonorchis sinensis; Hyperspectral imaging; Nondestructive detection; Modeling
-
Multitemporal Field-Based Maize Plant Height Information Extraction and Verification Using Solid-State LiDAR
作者:Zhao, Junhong;Zhou, Xingxing;Chen, Shengde;Zhou, Bo;He, Haoxiang;Zhao, Yingjie;Wang, Yu
关键词:iterative closest point; maize; plant height; point cloud; solid-state LiDAR; supervoxel clustering algorithm
-
The Impact of Light Intensities on the Phenotypic Parameters of Cucumber Seedlings at Three Developmental Stages
作者:Li, Bin;Wei, Xinyu;Zhou, Xingxing;Zhao, Junhong;Lu, Huazhong;Chen, Xi;Yang, Fengxi
关键词:plant factory; cucumber seedling; light requirement; developmental stage; seedling phenotype
-
Photocatalytic reforming of biomass for hydrogen production: A comprehensive overview
作者:Xu, Sai;Huang, Xi;Xu, Sai;Xu, Sai;Lu, Huazhong
关键词:Photocatalytic reforming; Biomass; Clean energy; Hydrogen; Environment
-
Automatic Recognition and Quantification Feeding Behaviors of Nursery Pigs Using Improved YOLOV5 and Feeding Functional Area Proposals
作者:Luo, Yizhi;Luo, Haowen;Luo, Yizhi;Lu, Huazhong;Luo, Haowen;Lv, Enli;Li, Bin;Meng, Fanming;Xia, Jinjin;Lv, Enli;Zeng, Zhixiong;Meng, Fanming;Yang, Aqing
关键词:nursery pigs; feeding behavior recognition; functional area proposals; behavioral quantification; transformer
-
Intelligent Rapid Detection Techniques for Low-Content Components in Fruits and Vegetables: A Comprehensive Review
作者:Xu, Sai;Liang, Xin;Guo, Yinghua;Liang, Xin;Lu, Huazhong
关键词:fruits and vegetables; intelligent rapid detection; low-content components
-
A Framework for Single-Panicle Litchi Flower Counting by Regression with Multitask Learning
作者:Lin, Jiaquan;Li, Jun;Ma, Zhe;Li, Can;Huang, Guangwen;Li, Jun;Li, Jun;Lu, Huazhong
关键词: