您好,欢迎访问湖北省农业科学院 机构知识库!

Dynamic Transcriptome Analysis of Anther Response to Heat Stress during Anthesis in Thermotolerant Rice (Oryza sativa L.)

文献类型: 外文期刊

作者: Liu, Gang 1 ; Zha, Zhongping 1 ; Cai, Haiya 1 ; Qin, Dandan 1 ; Jia, Haitao 1 ; Liu, Changyan 1 ; Qiu, Dongfeng 1 ; Zhang 1 ;

作者机构: 1.Hubei Acad Agr Sci, Food Crops Inst, Hubei Key Lab Food Crop Germplasm & Genet Improve, Wuhan 430064, Peoples R China

关键词: rice; heat stress; transcriptome; anther; anthesis

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:5.923; 五年影响因子:6.132 )

ISSN:

年卷期: 2020 年 21 卷 3 期

页码:

收录情况: SCI

摘要: High temperature at anthesis is one of the most serious stress factors for rice (Oryza sativa L.) production, causing irreversible yield losses and reduces grain quality. Illustration of thermotolerance mechanism is of great importance to accelerate rice breeding aimed at thermotolerance improvement. Here, we identified a new thermotolerant germplasm, SDWG005. Microscopical analysis found that stable anther structure of SDWG005 under stress may contribute to its thermotolerance. Dynamic transcriptomic analysis totally identified 3559 differentially expressed genes (DEGs) in SDWG005 anthers at anthesis under heat treatments, including 477, 869, 2335, and 2210 for 1, 2, 6, and 12 h, respectively; however, only 131 were regulated across all four-time-points. The DEGs were divided into nine clusters according to their expressions in these heat treatments. Further analysis indicated that some main gene categories involved in heat-response of SDWG005 anthers, such as transcription factors, nucleic acid and protein metabolisms related genes, etc. Comparison with previous studies indicates that a core gene-set may exist for thermotolerance mechanism. Expression and polymorphic analysis of agmatine-coumarin-acyltransferase gene OsACT in different accessions suggested that it may involve in SDWG005 thermotolerance. This study improves our understanding of thermotolerance mechanisms in rice anthers during anthesis, and also lays foundation for breeding thermotolerant varieties via molecular breeding.

  • 相关文献
作者其他论文 更多>>