文献类型: 外文期刊
作者: Zhou, Longfei 1 ; Gu, Xiaohe 1 ; Cheng, Shu 3 ; Yang, Guijun 1 ; Shu, Meiyan 4 ; Sun, Qian 1 ;
作者机构: 1.Minist Agr, Key Lab Quantitat Remote Sensing Agr, Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
3.Shandong Univ Sci & Technol, Coll Geomat, Qingdao 266590, Shandong, Peoples R China
4.China Agr Univ, Coll Land Sci & Technol, Beijing 100193, Peoples R China
关键词: UAV-LiDAR; lodging maize; plant height; crop height model; recovery ability
期刊名称:AGRICULTURE-BASEL ( 影响因子:2.925; 五年影响因子:3.044 )
ISSN:
年卷期: 2020 年 10 卷 5 期
页码:
收录情况: SCI
摘要: Lodging stress seriously affects the yield, quality, and mechanical harvesting of maize, and is a major natural disaster causing maize yield reduction. The aim of this study was to obtain light detection and ranging (LiDAR) data of lodged maize using an unmanned aerial vehicle (UAV) equipped with a RIEGL VUX-1UAV sensor to analyze changes in the vertical structure of maize plants with different degrees of lodging, and thus to use plant height to quantitatively study maize lodging. Based on the UAV-LiDAR data, the height of the maize canopy was retrieved using a canopy height model to determine the height of the lodged maize canopy at different times. The profiles were analyzed to assess changes in maize plant height with different degrees of lodging. The differences in plant height growth of maize with different degrees of lodging were evaluated to determine the plant height recovery ability of maize with different degrees of lodging. Furthermore, the correlation between plant heights measured on the ground and LiDAR-estimated plant heights was used to verify the accuracy of plant height estimation. The results show that UAV-LiDAR data can be used to achieve maize canopy height estimation, with plant height estimation accuracy parameters of R-2 = 0.964, RMSE = 0.127, and nRMSE = 7.449%. Thus, it can reflect changes of plant height of lodging maize and the recovery ability of plant height of different lodging types. Plant height can be used to quantitatively evaluate the lodging degree of maize. Studies have shown that the use of UAV-LiDAR data can effectively estimate plant heights and confirm the feasibility of LiDAR data in crop lodging monitoring.
- 相关文献
作者其他论文 更多>>
-
Estimation of grain filling rate and thousand-grain weight of winter wheat ( Triticum aestivum L. ) using UAV-based multispectral images
作者:Zhang, Baoyuan;Dai, Menglei;Sun, Qian;Qu, Xuzhou;Zhang, Mingzheng;Gu, Xiaohe;Zhang, Baoyuan;Gu, Limin;Dai, Menglei;Bao, Xiaoyuan;Zhen, Wenchao;Zhen, Wenchao;Zhen, Wenchao;Zhang, Baoyuan;Liu, Xingyu;Fan, Chengzhi
关键词:Grain filling rate; Grain weight; UAV; Winter wheat; Vegetation index
-
Research on methods for estimating reference crop evapotranspiration under incomplete meteorological indicators
作者:Sun, Xuguang;Zhang, Baoyuan;Gao, Ruocheng;Gu, Limin;Zhen, Wenchao;Sun, Xuguang;Zhang, Baoyuan;Dai, Menglei;Ma, Kai;Gu, Xiaohe;Dai, Menglei;Jing, Cuijiao;Gu, Limin;Zhen, Wenchao;Gu, Shubo;Gu, Shubo;Zhen, Wenchao
关键词:reference crop evapotranspiration; Penman-Monteith; FAO-24 radiation; meteorological indicators; Bayesian estimation
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal
-
Estimation of Peanut Southern Blight Severity in Hyperspectral Data Using the Synthetic Minority Oversampling Technique and Fractional-Order Differentiation
作者:Sun, Heguang;Shu, Meiyan;Yue, Jibo;Guo, Wei;Sun, Heguang;Zhang, Jie;Feng, Ziheng;Feng, Haikuan;Song, Xiaoyu;Zhou, Lin
关键词:peanut southern blight; SMOTE; hyperspectral reflectance; machine learning; FOD



