您好,欢迎访问江苏省农业科学院 机构知识库!

Salicylic Acid Stimulates Antioxidant Defense and Osmolyte Metabolism to Alleviate Oxidative Stress in Watermelons under Excess Boron

文献类型: 外文期刊

作者: Moustafa-Farag, Mohamed 1 ; Mohamed, Heba, I 4 ; Mahmoud, Ahmed 1 ; Elkelish, Amr 5 ; Misra, Amarendra N. 6 ; Guy, 1 ;

作者机构: 1.Zhejiang Univ, Agr & Biotechnol Coll, Lab Germplasm Improvement & Mol Breeding, Hangzhou 310029, Peoples R China

2.Agr Res Ctr, Hort Res Inst, Giza 12619, Egypt

3.Guangdong Acad Agr Sci, Inst Agr Resources & Environm, Guangzhou 510640, Peoples R China

4.Ain Shams Univ, Fac Educ, Biol & Geol Sci Dept, Cairo 11566, Egypt

5.Suez Canal Univ, Fac Sci, Bot Dept, Ismailia 41522, Egypt

6.Cent Univ Jharkhand, Dept Life Sci, Ranchi 835205, Bihar, India

7.Khallikote Univ, Dept Biosci & Biotechnol, GMax Bldg, Berhampur 761008, India

关键词: salicylic acid; chlorophyll fluorescence; excess boron; lipid peroxidation; enzymatic antioxidant; glutathione; proline; stomatal conductance

期刊名称:PLANTS-BASEL ( 影响因子:3.935; )

ISSN:

年卷期: 2020 年 9 卷 6 期

页码:

收录情况: SCI

摘要: Boron (B) is a microelement required in vascular plants at a high concentration that produces excess boron and toxicity in many crops. B stress occurs widely and limits plant growth and crop productivity worldwide. Salicylic acid (SA) is an essential hormone in plants and is a phenolic compound. The goal of this work is to explore the role of SA in the alleviation of excess B (10 mg L-1) in watermelon plants at a morphological and biochemical level. Excess boron altered the nutrient concentrations and caused a significant reduction in morphological criteria; chlorophyll a, b, and carotenoids; net photosynthetic rate; and the stomatal conductance and transpiration rate of watermelon seedlings, while intercellular carbon dioxide (CO2) was significantly increased compared to the control plants (0.5 mg L-1B). Furthermore, excess boron accelerated the generation of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2) and induced cellular oxidative injury. The application of exogenous SA significantly increased chlorophyll and carotenoid contents in plants exposed to excess B (10 mg L-1), in line with the role of SA in alleviating chlorosis caused by B stress. Exogenously applied SA promoted photosynthesis and, consequently, biomass production in watermelon seedlings treated with a high level of B (10 mg L-1) by reducing B accumulation, lipid peroxidation, and the generation of H2O2, while significantly increasing levels of the most reactive ROS, OH-. SA also activated antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) and protected the seedlings from an ROS induced cellular burst. In conclusion, SA can be used to alleviate the adverse effects of excess boron.

  • 相关文献
作者其他论文 更多>>