Combined Use of FCN and Harris Corner Detection for Counting Wheat Ears in Field Conditions
文献类型: 外文期刊
作者: Wang, Daoyong 1 ; Fu, Yuanyuan 1 ; Yang, Guijun 1 ; Yang, Xiaodong 1 ; Liang, Dong 2 ; Zhou, Chengquan 3 ; Zhang, Ning 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Informat Technol Agr, Key Lab Quantitat Remote Sensing Agr, Minist Agr, Beijing 100097, Peoples R China
2.Anhui Univ, Natl Engn Res Ctr Agroecol Big Data Anal & Applic, Hefei 230601, Peoples R China
3.Zhejiang Acad Agr Sci ZAAS, Inst Agr Equipment, Hangzhou 310021, Peoples R China
4.Inst Agr Sci Lixiahe Dist, Yangzhou 225100, Jiangsu, Peoples R China
关键词: Wheat-ear counting; fully convolutional network; wheat-ear adhesion; Harris corner detection; field conditions
期刊名称:IEEE ACCESS ( 影响因子:3.367; 五年影响因子:3.671 )
ISSN: 2169-3536
年卷期: 2019 年 7 卷
页码:
收录情况: SCI
摘要: Accurate counting of wheat ears in field conditions is vital to predict yield and for crop breeding. To quickly and accurately obtain the number of wheat ears in a field, we propose herein a method to count wheat ears based on fully convolutional network (FCN) and Harris corner detection. The technical procedure consists essentially of 1) constructing a dataset of wheat-ear images from acquired red-green-blue (RGB) images; 2) training a FCN as the wheat-ear segmentation model by using the constructed image dataset; 3) preparing testing images and inputting them into the segmentation model to get the initial segmentation results; 4) binarizing the initial segmentation by using the Otsu algorithm (to facilitate subsequent processing); and 5) applying Harris corner detection after extracting the wheat-ear skeleton to obtain the number of wheat ears in the images. The segmentation results show that the proposed FCN-based segmentation model segments wheat ears with an average accuracy of 0.984 and at low computational cost. An average of only 0.033 s is required to segment a 256x256-pixel wheat-ear image. Moreover, the segmentation result is improved by nearly 10% compared with the previous segmentation methods under conditions of wheat-ear occlusion, leaf occlusion, uneven illumination, and soil disturbance. Subsequently, the proposed counting method achieves good results, with an average accuracy of 0.974, a coefficient of determination (R-2) of 0.983, and a root mean square error (RMSE) of 14.043. These metrics are all improved by 10% compared with the previous methods. These results show that the proposed method accurately counts wheat ears even under conditions of wheat-ear adhesion. Furthermore, the results provide an important technique for studying wheat phenotyping.
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding
-
Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning
-
Field-scale irrigated winter wheat mapping using a novel cross-region slope length index in 3D canopy hydrothermal and spectral feature space
作者:Zhang, Youming;Yang, Guijun;Li, Zhenhong;Liu, Miao;Zhang, Jing;Gao, Meiling;Zhu, Wu;Zhang, Youming;Yang, Guijun;Yang, Xiaodong;Song, Xiaoyu;Long, Huiling;Liu, Miao;Meng, Yang;Thenkabail, Prasad S.;Wu, Wenbin;Zuo, Lijun;Meng, Yang
关键词:Winter wheat; Irrigation mapping; Hydrothermal and spectral feature; Cross-region; Rainfed line; Slope Length Index
-
Combining UAV Remote Sensing with Ensemble Learning to Monitor Leaf Nitrogen Content in Custard Apple (Annona squamosa L.)
作者:Jiang, Xiangtai;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Meng, Yang;Feng, Haikuan;Li, Yafeng;Xue, Hanyu;Chen, Tianen;Jiang, Xiangtai;Xu, Xingang;Gao, Lutao
关键词:canopy nitrogen content; UAV remote sensing; ensemble learning; Lasso model



