Combined Use of FCN and Harris Corner Detection for Counting Wheat Ears in Field Conditions
文献类型: 外文期刊
作者: Wang, Daoyong 1 ; Fu, Yuanyuan 1 ; Yang, Guijun 1 ; Yang, Xiaodong 1 ; Liang, Dong 2 ; Zhou, Chengquan 3 ; Zhang, Ning 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Informat Technol Agr, Key Lab Quantitat Remote Sensing Agr, Minist Agr, Beijing 100097, Peoples R China
2.Anhui Univ, Natl Engn Res Ctr Agroecol Big Data Anal & Applic, Hefei 230601, Peoples R China
3.Zhejiang Acad Agr Sci ZAAS, Inst Agr Equipment, Hangzhou 310021, Peoples R China
4.Inst Agr Sci Lixiahe Dist, Yangzhou 225100, Jiangsu, Peoples R China
关键词: Wheat-ear counting; fully convolutional network; wheat-ear adhesion; Harris corner detection; field conditions
期刊名称:IEEE ACCESS ( 影响因子:3.367; 五年影响因子:3.671 )
ISSN: 2169-3536
年卷期: 2019 年 7 卷
页码:
收录情况: SCI
摘要: Accurate counting of wheat ears in field conditions is vital to predict yield and for crop breeding. To quickly and accurately obtain the number of wheat ears in a field, we propose herein a method to count wheat ears based on fully convolutional network (FCN) and Harris corner detection. The technical procedure consists essentially of 1) constructing a dataset of wheat-ear images from acquired red-green-blue (RGB) images; 2) training a FCN as the wheat-ear segmentation model by using the constructed image dataset; 3) preparing testing images and inputting them into the segmentation model to get the initial segmentation results; 4) binarizing the initial segmentation by using the Otsu algorithm (to facilitate subsequent processing); and 5) applying Harris corner detection after extracting the wheat-ear skeleton to obtain the number of wheat ears in the images. The segmentation results show that the proposed FCN-based segmentation model segments wheat ears with an average accuracy of 0.984 and at low computational cost. An average of only 0.033 s is required to segment a 256x256-pixel wheat-ear image. Moreover, the segmentation result is improved by nearly 10% compared with the previous segmentation methods under conditions of wheat-ear occlusion, leaf occlusion, uneven illumination, and soil disturbance. Subsequently, the proposed counting method achieves good results, with an average accuracy of 0.974, a coefficient of determination (R-2) of 0.983, and a root mean square error (RMSE) of 14.043. These metrics are all improved by 10% compared with the previous methods. These results show that the proposed method accurately counts wheat ears even under conditions of wheat-ear adhesion. Furthermore, the results provide an important technique for studying wheat phenotyping.
- 相关文献
作者其他论文 更多>>
-
Research on Positioning and Navigation System of Greenhouse Mobile Robot Based on Multi-Sensor Fusion
作者:Cheng, Bo;Li, Xiaoyue;Zhang, Ning;Song, Weitang;He, Xueying;Wu, Huarui
关键词:agricultural greenhouse; navigation robot; multi-sensor fusion; ultra-wideband; inertial measurement unit; odometry; rangefinder
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
Maternal Malic Acid May Ameliorate Oxidative Stress and Inflammation in Sows through Modulating Gut Microbiota and Host Metabolic Profiles during Late Pregnancy
作者:Chen, Meixia;Liu, Hui;Zhang, Dongyan;Wang, Sixin;Wang, Jing;Zhao, Ying;Li, Shuang;Chang, Zhuo;Zhang, Xin
关键词:L-malic acid; late pregnancy; sow; gut microbiota; metabolic
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal
-
A method to rapidly construct 3D canopy scenes for maize and their spectral response evaluation
作者:Zhao, Dan;Xu, Tongyu;Yang, Hao;Zhang, Chengjian;Cheng, Jinpeng;Yang, Guijun;Henke, Michael
关键词:3D maize canopy scene; Functional-structural model; Canopy structure; 3D radiative transfer; Spectral response



