您好,欢迎访问湖北省农业科学院 机构知识库!

Transcriptomic analysis of short-term heat stress response in Pinellia ternata provided novel insights into the improved thermotolerance by spermidine and melatonin

文献类型: 外文期刊

作者: Ma, Guangjing 1 ; Zhang, Meide 1 ; Xu, Jilei 2 ; Zhou, Wuxian 1 ; Cao, Liwen 2 ;

作者机构: 1.Hubei Acad Agr Sci, Inst Chinese Herbal Med, Enshi 445000, Peoples R China

2.Chinese Acad Sci, Innovat Acad Seed Design, CAS Key Lab Plant Germplasm Enhancement & Special, Wuhan Bot Garden, Wuhan 430074, Peoples R China

3.Chinese Acad Sci, Ctr Econ Bot, Core Bot Gardens, Wuhan 430074, Peoples R China

关键词: Pinellia ternata; High temperature; RNA sequencing; Heat-stress responsive genes; Exogenous spermidine treatment; Exogenous melatonin treatment

期刊名称:ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY ( 影响因子:6.291; 五年影响因子:6.393 )

ISSN: 0147-6513

年卷期: 2020 年 202 卷

页码:

收录情况: SCI

摘要: Heat stress has been a major environmental factor limiting the growth and development of Pinellia ternata which is an important Chinese traditional medicine. It has been reported that spermidine (SPD) and melatonin (MLT) play pivotal roles in modulating heat stress response (HSR). However, the roles of SPD and MLT in HSR of P. ternata, and the potential mechanism is still unknown. Here, exogenous SPD and MLT treatments alleviated heat induced damages in P. ternata, which was supported by the increased chlorophyll content, OJIP curve, and relative water content, and the decreased malondialdehyde and electrolyte leakage. Then, RNA sequencing between CK (control) and Heat (1 h of heat treatment) was conducted to analyze how genes were in response to short-term heat stress in P. ternata. A total of 14,243 (7870 up-and 6373 down-regulated) unigenes were differentially expressed after 1 h of heat treatment. Bioinformatics analysis revealed heat-responsive genes mainly included heat shock proteins (HSPs), ribosomal proteins, ROS-scavenging enzymes, genes involved in calcium signaling, hormone signaling transduction, photosynthesis, pathogen resistance, and transcription factors such as heat stress transcription factors (HSFs), NACs, WRKYs, and bZIPs. Among them, PtABI5, PtNAC042, PtZIP17, PtSOD1, PtHSF30, PtHSFB2b, PtERF095, PtWRKY75, PtGST1, PtHSP23.2, PtHSP70, and PtLHC1 were significantly regulated by SPD or MLT treatment with same or different trends under heat stress condition, indicating that exogenous application of MLT and SPD might enhance heat tolerance in P. ternata through regulating these genes but may with different regulatory patterns. These findings contributed to the identification of potential genes involved in short-term HSR and the improved thermotolerance by MLT and SPD in P. ternata, which provided important clues for improving thermotolerance of P. ternata.

  • 相关文献
作者其他论文 更多>>