Estimation of Nitrogen Content on Apple Tree Canopy through Red-Edge Parameters from Fractional-Order Differential Operators using Hyperspectral Reflectance
文献类型: 外文期刊
作者: Peng, Yufeng 1 ; Zhu, Xicun 1 ; Xiong, Jingling 1 ; Yu, Ruiyang 1 ; Liu, Tianlin 1 ; Jiang, Yuanmao 3 ; Yang, Guijun 4 ;
作者机构: 1.Shandong Agr Univ, Coll Resources & Environm, Tai An 271018, Shandong, Peoples R China
2.Shandong Agr Univ, Natl Engn Lab Efficient Utilizat Soil & Fertilize, Tai An, Shandong, Peoples R China
3.Shandong Agr Univ, Coll Hort Sci & Engn, Natl Apple Engn & Technol Res Ctr, Tai An 271018, Shandong, Peoples R China
4.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
关键词: Hyperspectral; Fractional differential; Red-edge parameter; Canopy nitrogen
期刊名称:JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING ( 影响因子:1.563; 五年影响因子:1.485 )
ISSN: 0255-660X
年卷期:
页码:
收录情况: SCI
摘要: Timely, nondestructive and effective determination of canopy nitrogen content provides an important reference value for real-time monitoring of total nitrogen status of apple trees. Different processing methods are used to mine hyperspectral information to estimate nitrogen content. However, the overprocessing or underprocessing of hyperspectral data leads to the underutilization of spectral information. The primary objective of this study was to establish a model for estimating the nitrogen content of apple tree canopy by red-edge parameters based on fractional differential. The Grunwald-Letnikov fractional difference algorithm was used to extract the red-edge parameters from the hyperspectral canopy data, so as to develop the support vector machine (SVM) and random forest (RF) models. The results showed that the correlation with nitrogen content can be enhanced by differential spectroscopy compared with the original spectrum. The spectral parameters such as red-edge peak area (Sr-(alpha)) obtained by fractional differential and logarithmic transformation processing and the correlation coefficient with nitrogen content can reach 0.6 or greater. The R-2 of SVM and RF models constructed with red-edge parameters reached 0.56 (RMSE was 1.51 for SVM) and 0.94 (RMSE was 0.84 for RF), respectively. The RPD greater than 2 indicates that both models could be used for nitrogen estimation, and the RF model has a better predictive effect (RPD was 2.17 for SVM, RPD was 2.43 for RF). It provides an effective method for real-time monitoring of apple canopy nitrogen status and provides theoretical and technical support for hyperspectral information mining and data processing.
- 相关文献
作者其他论文 更多>>
-
Improving potato AGB estimation to mitigate phenological stage impacts through depth features from hyperspectral data
作者:Liu, Yang;Feng, Haikuan;Fan, Yiguang;Chen, Riqiang;Bian, Mingbo;Ma, Yanpeng;Li, Jingbo;Xu, Bo;Yang, Guijun;Liu, Yang;Liu, Yang;Feng, Haikuan;Yue, Jibo;Jin, Xiuliang
关键词:AGB; Hyperspectral features; Deep features; SPA; LSTM; PLSR
-
Improving potato above ground biomass estimation combining hyperspectral data and harmonic decomposition techniques
作者:Liu, Yang;Feng, Haikuan;Fan, Yiguang;Chen, Riqiang;Ma, Yanpeng;Bian, Mingbo;Yang, Guijun;Liu, Yang;Liu, Yang;Feng, Haikuan;Yue, Jibo
关键词:AGB; ASD; UHD185; Harmonic components; PLSR
-
Hyperspectral Estimation of Chlorophyll Content in Grape Leaves Based on Fractional-Order Differentiation and Random Forest Algorithm
作者:Li, Yafeng;Xu, Xingang;Zhu, Yaohui;Xue, Hanyu;Li, Yafeng;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Yang, Xiaodong;Meng, Yang;Jiang, Xiangtai;Xue, Hanyu
关键词:different varieties of grapes; leaf chlorophyll content; hyperspectral remote sensing; data-processing; RFR
-
A model suitable for estimating above-ground biomass of potatoes at different regional levels
作者:Liu, Yang;Fan, Yiguang;Ma, Yanpeng;Chen, Riqiang;Bian, Mingbo;Yang, Guijun;Feng, Haikuan;Yue, Jibo;Jin, Xiuliang
关键词:Potato; Hierarchical linear model; Hyperspectral; Meteorological data; Biomass
-
Real-time monitoring of maize phenology with the VI-RGS composite index using time-series UAV remote sensing images and meteorological data
作者:Feng, Ziheng;Ma, Xinming;Feng, Ziheng;Cheng, Zhida;Ren, Lipeng;Liu, Bowei;Zhang, Chengjian;Zhao, Dan;Sun, Heguang;Feng, Haikuan;Long, Huiling;Xu, Bo;Yang, Hao;Song, Xiaoyu;Yang, Guijun;Zhao, Chunjiang
关键词:UAV; Real-time; Composite index; Maize phenology; BBCH
-
Removal of canopy shadows improved retrieval accuracy of individual apple tree crowns LAI and chlorophyll content using UAV multispectral imagery and PROSAIL model
作者:Zhang, Chengjian;Chen, Zhibo;Chen, Riqiang;Qi, Ning;Zhang, Wenjie;Yang, Hao;Zhang, Chengjian;Yang, Guijun;Xu, Bo;Feng, Haikuan;Chen, Riqiang;Qi, Ning;Zhang, Wenjie;Zhao, Dan;Yang, Hao;Zhao, Dan;Cheng, Jinpeng
关键词:Leaf area index (LAI); Leaf chlorophyll content (LCC); Canopy chlorophyll content (CCC); Broad -band vegetation indexes (VIs); A hybrid inversion model
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet