您好,欢迎访问广东省农业科学院 机构知识库!

Selenium Protects Yellow Catfish (Tachysurus fulvidraco) from Low-Temperature Damage via the Perspective Analysis of Metabolomics and Intestinal Microbes

文献类型: 外文期刊

作者: Hu, Junru 1 ; Wang, Lei 2 ; Wang, Guoxia 1 ; Zhao, Hongxia 1 ; Lu, Huijie 1 ; Peng, Kai 1 ; Huang, Wen 1 ; Liu, Zhenxing 4 ; Liu, Ding 3 ; Sun, Yuping 1 ;

作者机构: 1.Guangdong Acad Agr Sci, Key Lab Anim Nutr & Feed Sci South China, Guangdong Key Lab Anim Breeding & Nutr, Minist Agr Rural Affairs,Inst Anim Sci, Guangzhou 510640, Peoples R China

2.South China Normal Univ, Coll Life Sci, Key Lab Ecol & Environm Sci Guangdong Higher Educ, Guangdong Prov Key Lab Hlth & Safe Aquaculture, Guangzhou 510631, Peoples R China

3.Guangdong Havwii Agr Grp Co Ltd, Zhanjiang 524266, Peoples R China

4.Guangdong Acad Agr Sci, Inst Anim Hlth, Guangzhou 510640, Peoples R China

关键词: selenium; Tachysurus fulvidraco; low-temperature stress; metabolomics; intestinal microbes

期刊名称:FISHES ( 影响因子:2.3; 五年影响因子:2.4 )

ISSN:

年卷期: 2024 年 9 卷 2 期

页码:

收录情况: SCI

摘要: The effects of selenium supplementation in Tachysurus fulvidraco (T. fulvidraco) on low-temperature stress are not known. In this study, 280 healthy T. fulvidraco were divided into two groups, the G0 group (a control group) and the T0 group (a selenium treatment group on a 0.22 mg/kg diet), for a 6-week feeding time. Then, low-temperature stress (water temperature dropped from 26 to 13 C-degrees, with a rate of 1 C-degrees/h) was administered after that. The feeding results showed that selenium increased the percent weight gain (PWG), specific growth rate (SGR), and survival rate (SR) of T. fulvidraco and decreased the feed conversion rate (FCR), but these differences were not significant (p > 0.05). Under low temperatures, selenium still has no significant effects on antioxidant indexes such as glutathione peroxidase (GSH-Px) activity, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content in serum (p > 0.05). However, metabolomic analysis revealed that selenium caused changes in lipids and lipid-like molles, organic acids and their derivatives, and fatty acyls. Choline, linoleic acid, and glycerophospholipid metabolism pathways; d-arginine and d-ornithine metabolism; valine, leucine, and isoleucine degradation; and biosynthesis pathways, as well as pyrimidine metabolism pathways, were activated to produce these metabolites to combat against this stress. In addition, selenium increased the diversity of intestinal microbes in T. fulvidraco and decreased the relative abundance of Plesiomonas. However, the combined analysis showed the intestinal microbe changes did not affect metabolite production. In summary, selenium activated lipid, carbohydrate, and amino acid metabolism for energy substance provision, reduced the oxidation and production of other harmful substances, and increased the intestinal microbe diversity of T. fulvidraco to improve resistance to low-temperature stress.

  • 相关文献
作者其他论文 更多>>