Physicochemical and Functional Properties of DND358 (A Hypocholesterolemic Soybean) Protein Isolate
文献类型: 外文期刊
作者: Luo, Tingting 1 ; Fan, Yuanhang 1 ; Fan, Mengmeng 1 ; Li, Ming 2 ; Qiu, Zhendong 1 ; Du, Qiuyan 1 ; Ma, Chongxuan 1 ; Liu, Chang 1 ; Peng, Yuhan 1 ; Zhang, Shuzhen 1 ; Liu, Shanshan 1 ; Song, Bo 1 ;
作者机构: 1.Northeast Agr Univ, Soybean Res Inst, Harbin 150030, Peoples R China
2.Heilongjiang Acad Agr Sci, Keshan Branch, Qiqihar 161000, Peoples R China
3.Harbin Normal Univ, Coll Life Sci & Technol, Key Lab Mol & Cytogenet, Harbin 150025, Peoples R China
关键词: soybean; extraction conditions; functional feature description
期刊名称:FOODS ( 影响因子:5.1; 五年影响因子:5.6 )
ISSN:
年卷期: 2024 年 13 卷 20 期
页码:
收录情况: SCI
摘要: The properties and applications of soybean protein isolates (SPIs) have been extensively investigated. In this study, we determined the optimal conditions for the preparation of the DND358 soybean protein isolate (DND358-SPI), assessed its physicochemical and functional properties, and investigated its potential applications in the food industry. According to the results, the highest extraction rate of DND358-SPI was observed when the pH was 9.5, the temperature was 55 degrees C, the duration was 80 min, and the material-to-liquid ratio was 1:20 (w/v). With regard to the functional properties, the water-holding capacity (WHC) and oil-binding capacity (OBC) of DND358-SPI were higher than those of other varieties, reaching 4.73% and 11.04%, respectively. In addition, the hardness, adhesiveness, chewiness, and resilience of DND358-SPI were higher than those of other varieties, reaching 159.27 g, 186.07 g, 6.78 mj, and 1.88, respectively. These findings indicate that DND358-SPI can reduce cholesterol levels and may be used to produce cholesterol-lowering food products.
- 相关文献
作者其他论文 更多>>
-
Fine Mapping of QTLs/QTNs and Mining of Genes Associated with Race 7 of the Soybean Cercospora sojina by Combining Linkages and GWAS
作者:Liu, Yanzuo;Hu, Bo;Yu, Aitong;Liu, Yuxi;Xu, Pengfei;Zhang, Shuzhen;Li, Wen-Xia;Ning, Hailong;Wang, Yang;Ding, Junjie
关键词:soybean; cultivar leaf spot; QTL; QTN; resistance gene
-
The EIN3 transcription factor GmEIL1 improves soybean resistance to Phytophthora sojae
作者:Chen, Xi;Sun, Yan;Yang, Yu;Zhao, Yuxin;Zhang, Chuanzhong;Fang, Xin;Gao, Hong;Zhao, Ming;He, Shengfu;Song, Bo;Liu, Shanshan;Xu, Pengfei;Zhang, Shuzhen;Chen, Xi;Wu, Junjiang;Zhang, Shuzhen;Xu, Pengfei;Zhang, Shuzhen;Wu, Junjiang
关键词:EIN3-binding sequence; ethylene; GmEIL1; Phytophthora root rot of soybean
-
Generation of New β-Conglycinin-Deficient Soybean Lines by Editing the lincRNA lincCG1 Using the CRISPR/Cas9 System
作者:Song, Bo;Luo, Tingting;Fan, Yuanhang;Qiu, Zhendong;Tian, Yusu;Shang, Yuzhuo;Ma, Chongxuan;Liu, Chang;Cao, Qingqian;Peng, Yuhan;Xu, Pengfei;Zhang, Shuzhen;Liu, Shanshan;Song, Bo;Li, Ming;Krishnan, Hari B.;Krishnan, Hari B.;Wang, Zhenhui
关键词:soybean; lincRNA; loss of function; beta-conglycinin deficiency; Cas9-free line
-
CRISPR-Cas9-mediated editing of GmARM improves resistance to multiple stresses in soybean
作者:Luo, Tingting;Ma, Chongxuan;Fan, Yuanhang;Qiu, Zhendong;Tian, Yusu;Shang, Yuzhuo;Liu, Chang;Cao, Qingqian;Peng, Yuhan;Zhang, Shuzhen;Liu, Shanshan;Song, Bo;Li, Ming;Song, Bo
关键词:Soybean; Stress resistance; GmARM; CRISPR/Cas9
-
Wild soybean ( Glycine soja ) transcription factor GsWRKY40 plays positive roles in plant salt tolerance
作者:Li, Minglong;Xue, Man;Ma, Huiying;Chen, Tong;Li, Qiang;Ding, Xiaodong;Xiao, Jialei;Li, Minglong;Li, Qiang;Ding, Xiaodong;Zhang, Shuzhen;Xiao, Jialei;Zhang, Shuzhen;Feng, Peng;Sun, Xiaohuan
关键词:Wild soybean; Transcription factor; Salt stress; ROS
-
The MYB Transcription Factor GmMYB78 Negatively Regulates Phytophthora sojae Resistance in Soybean
作者:Gao, Hong;Ma, Jia;Zhao, Yuxin;Zhang, Chuanzhong;Zhao, Ming;He, Shengfu;Sun, Yan;Fang, Xin;Chen, Xiaoyu;Ma, Kexin;Pang, Yanjie;Gu, Yachang;Dongye, Yaqun;Xu, Pengfei;Zhang, Shuzhen;Wu, Junjiang
关键词:GmMYB78; soybean; Phytophthora sojae; jasmonic acid; GmbHLH122; GmbZIP25
-
Inversion Tillage Combined with Organic Fertilizer Application Increased Maize Yield via Improving Soil Pore Structure and Enzymatic Activity in Haplic Chernozem
作者:Liu, Chunzhu;Han, Xiaozeng;Chen, Xu;Yan, Jun;Lu, Xinchun;Zou, Wenxiu;Song, Bo;Ma, Xianfa;Wang, Wei
关键词:inversion tillage; organic fertilizer; enzymatic stoichiometry; microbial resource limitation; soil pore structure; maize yield



