文献类型: 外文期刊
作者: Chai, Shunxing 1 ; Zhu, Zhihua 1 ; Tian, Ernuo 1 ; Xiao, Meili 1 ; Wang, Yan 1 ; Zou, Gen 1 ; Zhou, Zhihua 1 ;
作者机构: 1.Chinese Acad Sci, Inst Plant Physiol & Ecol, CAS Key Lab Synthet Biol, CAS Ctr Excellence Mol Plant Sci, Shanghai 200032, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Shanghai Acad Agr Sci, Shanghai Key Lab Agr Genet & Breeding, Inst Edible Fungi, Shanghai 201403, Peoples R China
关键词: Trichoderma reesei; heterologous protein expression; chassis; iterative gene deletion
期刊名称:ACS SYNTHETIC BIOLOGY ( 影响因子:5.249; 五年影响因子:5.373 )
ISSN: 2161-5063
年卷期: 2022 年 11 卷 1 期
页码:
收录情况: SCI
摘要: Trichoderma reesei has an extremely high capacity for synthesizing and secreting proteins, thus exhibiting promise as an expression platform for heterologous proteins. However, T. reesei secretes large amounts of native proteins, which hinders its widespread application for heterologous protein production. Here, we designed and built a series of T. reesei chassis using an iterative gene deletion approach based on an efficient genome editing system. Donor DNAs with specially designed construct facilitated screening of positive deletion strains without ectopic insertion. Finally, marker-free T. reesei chassis with lower rates of native protein secretion and low levels of extracellular protease activity were constructed after 11 consecutive rounds of gene deletion. Higher production levels of three heterologous proteins-a bacterial xylanase XYL7, a fungal immunomodulatory protein LZ8, and the human serum albumin HSA-were achieved with these chassis using the cbh1 promoter. It is possible that diverse high-value proteins might be produced at a high yield using this engineered platform.
- 相关文献
作者其他论文 更多>>
-
An engineered Pichia pastoris platform for the biosynthesis of silk-based nanomaterials with therapeutic potential
作者:Tian, Ernuo;Yang, Yi;Zhou, Zhihua;Tian, Ernuo;Shen, Xiao;Xiao, Meili;Zhu, Zhihua;Yan, Xing;Wang, Pingping;Zou, Gen;Zhou, Zhihua;Tian, Ernuo;Xiao, Meili;Zhou, Zhihua;Zou, Gen
关键词:Pichia pastoris; Silk fibroin; Secretion; Nanomaterials; Nanoparticles; Nanofibrils
-
Synthetic biology enables mushrooms to meet emerging sustainable challenges
作者:Zou, Gen;Li, Tian;Wei, Yongjun;Mijakovic, Ivan;Mijakovic, Ivan
关键词:mushroom; synthetic biology; sustainable development; circular economy; vegan meat; vegan leather
-
The protein methyltransferase TrSAM inhibits cellulase gene expression by interacting with the negative regulator ACE1 in Trichoderma reesei
作者:Zhu, Zhihua;Zou, Gen;Chai, Shunxing;Xiao, Meili;Wang, Yinmei;Wang, Pingping;Zhou, Zhihua;Zhu, Zhihua;Chai, Shunxing;Xiao, Meili;Wang, Yinmei;Zou, Gen
关键词:
-
Advancements and Future Directions in Yellow Rice Wine Production Research
作者:Zhang, Jingxian;Li, Tian;Wei, Yongjun;Zhang, Jingxian;Qu, Lingbo;Zou, Gen;Wei, Yongjun;Qu, Lingbo
关键词:yellow rice wine; microbial fermentation; biotechnology; microbiota; synthetic biology
-
Current Advances in the Functional Genes of Edible and Medicinal Fungi: Research Techniques, Functional Analysis, and Prospects
作者:Li, Wenyun;Zou, Gen;Bao, Dapeng;Wu, Yingying;Li, Wenyun;Bao, Dapeng;Wu, Yingying
关键词:macrofungi; genetic transformation; gene editing; mating-type genes; active substances
-
An Efficient CRISPR/Cas9 Genome Editing System for a Ganoderma lucidum Cultivated Strain by Ribonucleoprotein Method
作者:Tan, Yi;Feng, Na;Tang, Chuanhong;Zou, Gen;Zhang, Jingsong;Yu, Xianglin;Tian, Jialin;Zhang, Zhigang
关键词:Ganoderma lucidum; CRISPR/Cas9; genome editing; ribonucleoproteins (RNPs); the orotidine 5 & PRIME;-monophosphate decarboxylase gene (ura3)
-
Improving cold-adaptability of mesophilic cellulase complex with a novel mushroom cellobiohydrolase for efficient low-temperature ensiling
作者:Gong, Ming;Wang, Ying;Bao, Dapeng;Jiang, Shan;Chen, Hongyu;Shang, Junjun;Wang, Xiaojun;Zou, Gen;Yu, Hnin Hnin
关键词:Cellulase; Cellobiohydrolase; Cold-active; Ensilage; Bioparts