Integration of UAV Multi-Source Data for Accurate Plant Height and SPAD Estimation in Peanut
文献类型: 外文期刊
作者: He, Ning 1 ; Chen, Bo 1 ; Lu, Xianju 1 ; Bai, Bo 3 ; Fan, Jiangchuan 1 ; Zhang, Yongjiang 2 ; Li, Guowei 3 ; Guo, Xinyu 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing Key Lab Digital Plant, Beijing 100097, Peoples R China
2.Hebei Agr Univ, Coll Agron, State Key Lab North China Crop Improvement & Regul, Key Lab Crop Growth Regulat Hebei Prov, Baoding 071000, Peoples R China
3.Shandong Acad Agr Sci, Inst Crop Germplasm Resources, Shandong Prov Key Lab Crop Genet Improvement & Eco, Jinan 250100, Peoples R China
关键词: peanut; phenotype estimation; multi-source data fusion; machine learning
期刊名称:DRONES ( 影响因子:4.8; 五年影响因子:5.0 )
ISSN:
年卷期: 2025 年 9 卷 4 期
页码:
收录情况: SCI
摘要: Plant height and SPAD values are critical indicators for evaluating peanut morphological development, photosynthetic efficiency, and yield optimization. Recent unmanned aerial vehicle (UAV) technology advancements have enabled high-throughput phenotyping at field scales. As a globally strategic oilseed crop, peanut plays a vital role in ensuring food and edible oil security. This study aimed to develop an optimized estimation framework for peanut plant height and SPAD values through machine learning-driven integration of UAV multi-source data while evaluating model generalizability across temporal and spatial domains. Multispectral UAV and ground data were collected across four growth stages (2023-2024). Using spectral indices and Texture features, four models (PLSR, SVM, ANN, RFR) were trained on 2024 data and independently validated with 2023 datasets. The ensemble machine learning models (RFR) significantly enhanced estimation accuracy (R2 improvement: 3.1-34.5%) and robustness compared to the linear model (PLSR). Feature stability analysis revealed that combined spectral-textural features outperformed single-feature approaches. The SVM model achieved superior plant height prediction (R2 = 0.912, RMSE = 2.14 cm), while RFR optimally estimated SPAD values (R2 = 0.530, RMSE = 3.87) across heterogeneous field conditions. This UAV-based multi-modal integration framework demonstrates significant potential for temporal monitoring of peanut growth dynamics.
- 相关文献
作者其他论文 更多>>
-
LettuceP3D: A tool for analysing 3D phenotypes of individual lettuce plants
作者:Ge, Xiaofen;Guo, Xinyu;Ge, Xiaofen;Wu, Sheng;Wen, Weiliang;Xiao, Pengliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Guo, Xinyu;Ge, Xiaofen;Wu, Sheng;Wen, Weiliang;Xiao, Pengliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Guo, Xinyu;Wu, Sheng;Wen, Weiliang;Shen, Fei
关键词:Lettuce; Point cloud segmentation; Deep learning; Phenotypic analysis algorithm
-
3D time-series phenotyping of lettuce in greenhouses
作者:Ma, Hanyu;Wen, Weiliang;Gou, Wenbo;Fan, Jiangchuan;Gu, Shenghao;Guo, Xinyu;Ma, Hanyu;Wen, Weiliang;Gou, Wenbo;Lu, Xianju;Fan, Jiangchuan;Zhang, Minggang;Liang, Yuqiang;Gu, Shenghao;Guo, Xinyu
关键词:Time-series; 3D phenotyping; Rail-driven phenotyping platform; Lettuce; Greenhouse
-
Comprehensive review on 3D point cloud segmentation in plants
作者:Song, Hongli;Wen, Weiliang;Wu, Sheng;Guo, Xinyu;Song, Hongli;Wen, Weiliang;Wu, Sheng;Guo, Xinyu;Song, Hongli
关键词:Plant; Three-dimensional; Point cloud; Segmentation; Multi-scale; Deep learning
-
Revolutionizing Crop Breeding: Next-Generation Artificial Intelligence and Big Data-Driven Intelligent Design
作者:Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhang, Ying;Guo, Xinyu;Zhao, Chunjiang;Huang, Guanmin;Lu, Xianju;Wang, Yanru;Wang, Chuanyu;Zhao, Yanxin
关键词:Crop breeding; Next-generation artificial intelligence; Multiomics big data; Intelligent design breeding
-
Three-Dimensional Time-Series Monitoring of Maize Canopy Structure Using Rail-Driven Plant Phenotyping Platform in Field
作者:Ma, Hanyu;Zhang, Dongsheng;Wen, Weiliang;Fan, Jiangchuan;Gu, Shenghao;Guo, Xinyu;Wen, Weiliang;Gou, Wenbo;Liang, Yuqiang;Zhang, Minggang;Fan, Jiangchuan;Gu, Shenghao;Guo, Xinyu
关键词:maize canopy; time-series phenotype; 3D point cloud; plot segmentation; marginal effect
-
Water phase distribution and its dependence on internal structure in soaking maize kernels: a study using low-field nuclear magnetic resonance and X-ray micro-computed tomography
作者:Wang, Baiyan;Zhao, Chunjiang;Wang, Baiyan;Gu, Shenghao;Wang, Juan;Wang, Guangtao;Guo, Xinyu;Zhao, Chunjiang
关键词:phenotyping; hydration; water absorption; seed emergence; kernel moisture
-
Analysis of stomatal characteristics of maize hybrids and their parental inbred lines during critical reproductive periods
作者:Zhang, Changyu;Jin, Yu;Wang, Jinglu;Zhang, Ying;Lu, Xianju;Guo, Xinyu;Zhang, Changyu;Jin, Yu;Wang, Jinglu;Zhang, Ying;Lu, Xianju;Guo, Xinyu;Zhao, Yanxin;Song, Wei
关键词:maize; hybrids; stomatal phenotypes; high-throughput acquisition; deep learning



