Wheat yield prediction using an enhanced WOFOST with soil stratified hydrothermal module driven by GLASS and ERA5-land products over Yellow River Basin
文献类型: 外文期刊
作者: Zhang, Jing 1 ; Yang, Guijun 1 ; Gao, Meiling 1 ; Zhang, Lijie 4 ; Chen, Weinan 1 ; Liu, Miao 1 ; Zhang, Youming 1 ; Tang, Aohua 1 ; Li, Zhenhong 1 ;
作者机构: 1.Changan Univ, Coll Geol Engn & Geomat, State Key Lab Loess Sci, Xian 710054, Peoples R China
2.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R China
3.Nanjing Agr Univ, Collaborat Innovat Ctr Modern Crop Prod Cosponsore, Nanjing 210095, Jiangsu, Peoples R China
4.Hebei Agr Univ, Coll Mech & Elect Engn, Baoding 071000, Peoples R China
关键词: Yield estimation; Crop growth model; E-WOFOST model; Data assimilation; Soil moisture; LAI
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:8.9; 五年影响因子:9.3 )
ISSN: 0168-1699
年卷期: 2025 年 237 卷
页码:
收录情况: SCI
摘要: Crop models are effective tools for monitoring crop growth and predicting yield. However, existing crop models rarely consider multi-layer soil moisture (SM), and overlook the SM contributions to crop growth especially in arid regions. Accurate assessment of SM profile distribution and its stress conditions is essential for improving crop growth simulation and yield forecasting, especially in water-limited agricultural regions. In this study, to better predict SM dynamics and crop yield, an enhanced WOFOST (E-WOFOST) with soil stratified hydrothermal module was developed. Firstly, a novel stress factor was proposed based on the SM contributions at different depths and growth stages. Second, the stress factor was integrated into the crop growth model. This approach enabled us to develop a comprehensive crop growth model that incorporates soil stratified hydrothermal process. In this way, leaf area index (LAI) from the Global Land Surface Satellite (GLASS) and SM from ERA5-Land products were assimilated into the E-WOFOST model using the ensemble Kalman filter (EnKF) algorithm to predict winter wheat yield in the Yellow River Basin (YRB). Results showed that the strategy incorporating weights and joint LAI and SM assimilation performed best at the point scale. When SM weights were considered, joint assimilation of LAI and SM (R2 = 0.85-0.90, RMSE = 441.24-740.99 kg/ha, MAPE = 7.83-14.62 %) outperformed LAI assimilation alone (R2 = 0.81-0.84, RMSE = 490.30-778.75 kg/ha, MAPE = 15.75-22.27 %) and SM assimilation alone (R2 = 0.72-0.84, RMSE = 583.10-1089.95 kg/ha, MAPE = 16.25-21.59 %) during 2017-2020. When without accounting for SM weights, dual-variable assimilation outperformed single-variable assimilation in 2018 and 2020, with a non-significant decrease in accuracy in 2017 and 2019. At the regional scale, joint LAI and SM assimilation with the SM weights also provided good crop yield estimates (R2 = 0.60, 0.66, 0.57 and 0.64, RMSE = 543.77, 340.66, 407.62 and 635.56 kg/ha from 2017 to 2020). This newly developed E-WOFOST model offers a valuable reference for improving the crop yield estimation precision and guiding agricultural water management.
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning
-
Field-scale irrigated winter wheat mapping using a novel cross-region slope length index in 3D canopy hydrothermal and spectral feature space
作者:Zhang, Youming;Yang, Guijun;Li, Zhenhong;Liu, Miao;Zhang, Jing;Gao, Meiling;Zhu, Wu;Zhang, Youming;Yang, Guijun;Yang, Xiaodong;Song, Xiaoyu;Long, Huiling;Liu, Miao;Meng, Yang;Thenkabail, Prasad S.;Wu, Wenbin;Zuo, Lijun;Meng, Yang
关键词:Winter wheat; Irrigation mapping; Hydrothermal and spectral feature; Cross-region; Rainfed line; Slope Length Index
-
Combining UAV Remote Sensing with Ensemble Learning to Monitor Leaf Nitrogen Content in Custard Apple (Annona squamosa L.)
作者:Jiang, Xiangtai;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Meng, Yang;Feng, Haikuan;Li, Yafeng;Xue, Hanyu;Chen, Tianen;Jiang, Xiangtai;Xu, Xingang;Gao, Lutao
关键词:canopy nitrogen content; UAV remote sensing; ensemble learning; Lasso model
-
EasyMetagenome: A user-friendly and flexible pipeline for shotgun metagenomic analysis in microbiome research
作者:Bai, Defeng;Xun, Jiani;Ma, Chuang;Luo, Hao;Yang, Haifei;Hou, Huiyu;Lv, Hujie;Wan, Xiulin;Wang, Yao;Yousuf, Salsabeel;Zeng, Meiyin;Zhang, Tianyuan;Gao, Yunyun;Liu, Yong-Xin;Chen, Tong;Ma, Chuang;Yang, Haifei;Cao, Chen;Cao, Xiaofeng;Cui, Jianzhou;Deng, Yuan-Ping;Deng, Zhaochao;Yu, Hao;Zhang, Chunfang;Dong, Wenxin;Dong, Wenxue;Du, Juan;Fang, Qunkai;Fang, Wei;Fang, Yue;Luan, Yaning;Fu, Fangtian;Fu, Min;Fu, Yi-Tian;Gao, He;Ge, Jingping;Guo, Yuhao;Gong, Qinglong;Lou, Wenbo;Gu, Lunda;Yang, Li;Guo, Peng;Hai, Tang;Liu, Hao;He, Jieqiang;He, Zi-Yang;Huang, Can;Ji, Shuai;Jiang, ChangHai;Jiang, Gui-Lai;Jiang, Lingjuan;Jin, Ling N.;Li, Changchao;Kan, Yuhe;Kang, Da;Kou, Jin;Lam, Ka-Lung;Li, Chong;Li, Fuyi;Li, Liwei;Li, Miao;Li, Xin;Li, Ye;Li, Zheng-Tao;Zhu, Chengshuai;Liang, Jing;Mo, Jiayuan;Lin, Yongxin;Liu, Changzhen;Liu, Danni;Zhang, Jing;Chen, Shifu;Liu, Fengqin;Liu, Jia;Liu, Tianrui;Liu, Tingting;Wang, Xinlong;Liu, Xinyuan;Luo, Yuanyuan;Liu, Yaqun;Liu, Bangyan;Liu, Minghao;Lv, Hujie;Ma, Tengfei;Mai, Zongjiong;Niu, Dongze;Pan, Zhuo;Qi, Heyuan;Shi, Zhanyao;Song, Chunjiao;Sun, Fuxiang;Sun, Yan;Tian, Sihui;Wang, Guoliang;Wang, Hongyang;Wang, Hongyu;Wang, Huanhuan;Wang, Jing;Wang, Jun;Wang, Kang;Wang, Leli;Yao, Xiaofang;Wang, Shao-kun;Xiao, Zufei;Xing, Huichun;Xu, Yifan;Yang, Song;Yan, Shu-yan;Zhang, Yi-Bo;Yang, Yuanming;Lei, Yu;Yuan, Zhengrong;Zhang, Chunge;Zhang, Huimin;Zhang, Na;Zhang, Yupeng;Zhang, Zheng;Zhou, Mingda;Zhou, Yuanping;Zhu, Zhihao;Zhu, Lin;Zhu, Yue;Zou, Hongqin;Zuo, Anna;Dong, Wenxuan;Wen, Tao;Chen, Shifu;Chen, Shifu;Li, Guoliang
关键词:metagenome; microbiome; microbiota; pipeline; visualization



