Using an optimized texture index to monitor the nitrogen content of potato plants over multiple growth stages
文献类型: 外文期刊
作者: Fan, Yiguang 1 ; Feng, Haikuan 1 ; Yue, Jibo 3 ; Jin, Xiuliang 4 ; Liu, Yang 1 ; Chen, Riqiang 1 ; Bian, Mingbo 1 ; Ma, Yanpeng 1 ; Song, Xiaoyu 1 ; Yang, Guijun 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R China
2.Nanjing Agr Univ, Coll Agr, Nanjing 210095, Jiangsu, Peoples R China
3.Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou 450002, Peoples R China
4.Chinese Acad Agr Sci, Key Lab Crop Physiol & Ecol, Minist Agr, Inst Crop Sci, Beijing 100081, Peoples R China
5.China Agr Univ, Key Lab Smart Agr Syst, Minist Educ, Beijing 100083, Peoples R China
6.China Agr Univ, Key Lab Agr Informat Acquisit Technol, Minist Agr & Rural Affairs, Beijing 100083, Peoples R China
关键词: Potato; Plant nitrogen content; Texture index; Unmanned aerial vehicle; Hyperspectral
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:8.3; 五年影响因子:8.3 )
ISSN: 0168-1699
年卷期: 2023 年 212 卷
页码:
收录情况: SCI
摘要: Plant nitrogen content (PNC) is vital for evaluating crop nitrogen nutrient status and for net primary productivity. Therefore, rapid and accurate acquisition of crop PNC information can help reduce fertilizer and increase efficiency in modern agriculture. This study investigated whether an optimized texture index constructed from hyperspectral characteristic wavelength images acquired from a unmanned aerial vehicle (UAV) may be used to estimate PNC in potatoes over multiple growth stages. A potato field trial conducted in 2019 in Beijing, China, included different planting densities, nitrogen fertilizer gradients, and potato varieties with three replicates. A UAV remote sensing platform served to acquire hyperspectral images during three critical N demand periods for potatoes. In addition, we simultaneously conducted field sampling to obtain ground-truth PNC measurements. Following the classical form of vegetation indices, 12 texture indices were constructed based on hyperspectral texture features, and an arbitrary variable combination optimization algorithm was used to optimize these indices. Finally, the texture index, which had the highest correlation with potato PNC, was used as the best indicator for estimating the PNC status of potato at multiple growth stages and whether this indicator, in combination with spectral information, could further improve the accuracy of potato PNC estimation was subsequently explored. The results showed that (i) the optimal texture index TTI3 (R494-Cor, R578-Hom, R514-Sem) maintained a good linear relationship with PNC at the late stage of potato growth, and the accuracy and stability of the PNC estimation models constructed based on it was significantly better than that of a single texture metric. (ii) Compared with spectral information alone, the texture index combined with spectral features improved the accuracy of potato PNC estimation. More specifically, TTI3 (R494-Cor, R578-Hom, R514-Sem) combined with the three-band spectral index TBI 5 (530, 734, 514) achieved the best estimation accuracy with calibrated R2, root mean square error (RMSE), and normalized RMSE of 0.77%, 0.28%, and 9.88%, respectively. The results of this study showed that the texture index constructed by combining multiple texture metrics enhanced the association between texture features and potato PNC over multiple growth stages, thus improving the monitoring accuracy of potato nitrogen nutrition status. This study can provide a reference for accurately managing crop nitrogen nutrition.
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
Plant-based proteins: advances in their sources, digestive profiles in vitro and potential health benefits
作者:Li, Mengzhuo;Qin, Peiyou;Zou, Liang;Qin, Peiyou;Zhang, Lizhen;Ren, Guixing;Liu, Yang;Zhao, Xiaoyan;Qin, Peiyou
关键词:Plant-based proteins; protein sources; in vitro digestion; processing; health benefits
-
Effects of Environmental Hypoxia on Serum Hematological and Biochemical Parameters, Hypoxia-Inducible Factor (hif) Gene Expression and HIF Pathway in Hybrid Sturgeon (Acipenser schrenckii ♂ x Acipenser baerii ♀)
作者:Ren, Yuanyuan;Cheng, Bo;Ren, Yuanyuan;Tian, Yuan;Liu, Yang;Yu, Huanhuan
关键词:hypoxia; physiological response; hypoxia-induced factor; HIF pathway; hybrid sturgeon
-
Comparison of three models for winter wheat yield prediction based on UAV hyperspectral images
作者:Xu, Xiaobin;Teng, Cong;Zhu, Hongchun;Li, Zhenhai;Teng, Cong;Feng, Haikuan;Zhao, Yu
关键词:hyperspectral imagery; unmanned aerial vehicle; winter wheat; yield prediction model; remote sensing
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal