Estimation of leaf chlorophyll content in winter wheat using variable importance for projection (VIP) with hyperspectral data
文献类型: 外文期刊
作者: He, Peng 1 ; Xu, Xingang 1 ; Zhang, Baolei; Li, Zhenhai 1 ; Feng, Haikuan 1 ; Yang, Guijun 1 ; Zhang, Yongfeng 1 ;
作者机构: 1.Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
3.Minist Agr, Key Lab Agriinformat, Beijing 100097, Peoples R China
4.Shandong Normal Univ, Coll Populat Resource & Environm, Jinan 250014, Shandong, Peoples R Chi
关键词: spectral indices;variable importance for projection;grey relational analysis;partial least squares regression;leaf chlorophyll content;Winter wheat
期刊名称:REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XVII
ISSN: 0277-786X
年卷期: 2015 年 9637 卷
页码:
收录情况: SCI
摘要: Accurate estimation of leaf chlorophyll content (LCC) has great significance in study of the winter wheat, which is important for indicating nutrition status and photosynthetic. Selecting the closed related variable is the key to LCC monitoring. The variable importance for projection (VIP), applied to little samples and strong correlation data, is one of variable selection methods. In this study, VIP was used to select spectral variables, which includes reflectance spectra, first derivative spectra, vegetation indices and absorption or reflectance position features. The grey relational analysis (GRA) was used as a comparison. The results showed that (1) the VIP technology could be used to variable selection and had a strong correlation. (2) Reflectance spectra with the VIP method displayed the best accuracy, with R-2 and RMSE of 0.42 and 0.663mg/g, respectively. (3) Vegetation indices using GRA had higher estimation than VIP method, with R-2 and RMSE of 0.52 and 0.607 mg/g, respectively. (4) The VIP had more superiority and higher accuracy than the GRA in all kinds of hyperspectral features except vegetation indices. Therefore, the VIP technology could be used to the estimation of LCC and had a relatively good accuracy.
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Sensitivity Analysis of AquaCrop Model Parameters for Winter Wheat under Different Meteorological Conditions Based on the EFAST Method
作者:Xing, Huimin;Sun, Qi;Li, Zhiguo;Wang, Zhen;Xing, Huimin;Wang, Zhen;Xing, Huimin;Sun, Qi;Wang, Zhen;Li, Zhiguo;Feng, Haikuan
关键词:winter wheat; biomass; sensitivity analysis; AquaCrop model
-
Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning
-
Field-scale irrigated winter wheat mapping using a novel cross-region slope length index in 3D canopy hydrothermal and spectral feature space
作者:Zhang, Youming;Yang, Guijun;Li, Zhenhong;Liu, Miao;Zhang, Jing;Gao, Meiling;Zhu, Wu;Zhang, Youming;Yang, Guijun;Yang, Xiaodong;Song, Xiaoyu;Long, Huiling;Liu, Miao;Meng, Yang;Thenkabail, Prasad S.;Wu, Wenbin;Zuo, Lijun;Meng, Yang
关键词:Winter wheat; Irrigation mapping; Hydrothermal and spectral feature; Cross-region; Rainfed line; Slope Length Index
-
Combining UAV Remote Sensing with Ensemble Learning to Monitor Leaf Nitrogen Content in Custard Apple (Annona squamosa L.)
作者:Jiang, Xiangtai;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Meng, Yang;Feng, Haikuan;Li, Yafeng;Xue, Hanyu;Chen, Tianen;Jiang, Xiangtai;Xu, Xingang;Gao, Lutao
关键词:canopy nitrogen content; UAV remote sensing; ensemble learning; Lasso model



