Newly Combined Spectral Indices to Improve Estimation of Total Leaf Chlorophyll Content in Cotton
文献类型: 外文期刊
作者: Jin, Xiuliang 1 ; Li, Zhenhai 2 ; Feng, Haikuan 1 ; Xu, Xingang 1 ; Yang, Guijun 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China
2.Zhejiang Univ, Inst Agr Remote Sensing & Informat Syst Applicat, Hangzhou 310029, Zhejiang, Peoples R China
关键词: Chlorophyll content estimation;combined spectral indices;cotton;PROSAIL model
期刊名称:IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING ( 影响因子:3.784; 五年影响因子:3.734 )
ISSN: 1939-1404
年卷期: 2014 年 7 卷 11 期
页码:
收录情况: SCI
摘要: The total leaf chlorophyll content (TLCC) provides valuable information about the physiological status of crops. The objectives of this study were 1) to analyze the leaf area index (LAI) and soil factors that influences the estimation of TLCC using the PROSAIL model, which is a combination of the PROSPECT leaf model and the SAIL canopy model; 2) to propose newly combined spectral indices that reduce the influence of LAI and soil factors in order to improve the TLCC estimation; and 3) to test and validate the relationship between TLCC and the newly combined spectral indices. Ground-based hyperspectral data and concurrent TLCC parameters of samples were acquired at the Shihezi University Experiment Site, Xinjiang Province, China, during the 2009 and 2010 cotton growing seasons. The results showed that the newly combined spectral indices [double-peak canopy nitrogen index I (DCNI I), the ratio of the structure insensitive pigment index to the ratio vegetation index III (SIPI/RVI III), the ratio of the plant pigment ratio to the normalized difference vegetation index (PPR/NDVI), and the modified MERIS terrestrial chlorophyll index (MMTCI)] were more sensitive to chlorophyll and more resistant to LAI than the PPR, SIPI, and MERIS terrestrial chlorophyll index alone. In this study, DCNI I proved to be the best spectral index for estimating chlorophyll content, with determination coefficients (R-2) and root mean square error (RMSE) values of 0.80 and 8.31 mu g.cm(-2), respectively. PPR/NDVI was also strongly correlated with chlorophyll content, with corresponding R2 and RMSE values of 0.79 and 9.45 mu g.cm(-2), respectively. This study concluded that DCNI I and PPR/NDVI, in association with indices related to nitrogen, have good potential for assessing nitrogen content.
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Sensitivity Analysis of AquaCrop Model Parameters for Winter Wheat under Different Meteorological Conditions Based on the EFAST Method
作者:Xing, Huimin;Sun, Qi;Li, Zhiguo;Wang, Zhen;Xing, Huimin;Wang, Zhen;Xing, Huimin;Sun, Qi;Wang, Zhen;Li, Zhiguo;Feng, Haikuan
关键词:winter wheat; biomass; sensitivity analysis; AquaCrop model
-
Estimation of Leaf Chlorophyll Content of Maize from Hyperspectral Data Using E2D-COS Feature Selection, Deep Neural Network, and Transfer Learning
作者:Chen, Riqiang;Feng, Haikuan;Hu, Haitang;Chen, Riqiang;Ren, Lipeng;Yang, Guijun;Cheng, Zhida;Zhao, Dan;Zhang, Chengjian;Feng, Haikuan;Hu, Haitang;Yang, Hao;Chen, Riqiang;Zhang, Chengjian;Ren, Lipeng;Feng, Haikuan
关键词:maize; chlorophyll; radiative transfer model; feature selection; transfer learning
-
Field-scale irrigated winter wheat mapping using a novel cross-region slope length index in 3D canopy hydrothermal and spectral feature space
作者:Zhang, Youming;Yang, Guijun;Li, Zhenhong;Liu, Miao;Zhang, Jing;Gao, Meiling;Zhu, Wu;Zhang, Youming;Yang, Guijun;Yang, Xiaodong;Song, Xiaoyu;Long, Huiling;Liu, Miao;Meng, Yang;Thenkabail, Prasad S.;Wu, Wenbin;Zuo, Lijun;Meng, Yang
关键词:Winter wheat; Irrigation mapping; Hydrothermal and spectral feature; Cross-region; Rainfed line; Slope Length Index
-
Combining UAV Remote Sensing with Ensemble Learning to Monitor Leaf Nitrogen Content in Custard Apple (Annona squamosa L.)
作者:Jiang, Xiangtai;Xu, Xingang;Wu, Wenbiao;Yang, Guijun;Meng, Yang;Feng, Haikuan;Li, Yafeng;Xue, Hanyu;Chen, Tianen;Jiang, Xiangtai;Xu, Xingang;Gao, Lutao
关键词:canopy nitrogen content; UAV remote sensing; ensemble learning; Lasso model



