您好,欢迎访问北京市农林科学院 机构知识库!

Comparative Study on Remote Sensing Invertion Methods for Estimating Winter Wheat Leaf Area Index

文献类型: 外文期刊

作者: Xie Qiao-yun 1 ; Huang Wen-jiang 1 ; Cai Shu-hong 3 ; Liang Dong 2 ; Peng Dai-liang 1 ; Zhang Qing 1 ; Huang Lin-sheng 2 ;

作者机构: 1.Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China

2.Anhui Univ, Key Lab Intelligent Comp & Signal Proc, Minist Educ, Hefei 230039, Peoples R China

3.Hebei Agr Tech Extens Stn, Shijiazhuang 050011, Peoples R China

4.Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China

关键词: Leaf area index;Hyperspectral;Support vector machine;Wavelet transform;Principle component analysis

期刊名称:SPECTROSCOPY AND SPECTRAL ANALYSIS ( 影响因子:0.589; 五年影响因子:0.504 )

ISSN: 1000-0593

年卷期: 2014 年 34 卷 5 期

页码:

收录情况: SCI

摘要: The present study aims to explore capability of different methods for winter wheat leaf area index inversion by integrating remote sensing image and synchronization field experiment. There were four kinds of LAI inversion methods discussed, specifically, support vector machines (SVM), discrete wavelet transform (DWT), continuous wavelet transform (CWT) and principal component analysis (PCA). Winter wheat LAI inversion models were established with the above four methods respectively, then estimation precision for each model was analyzed. Both discrete wavelet transform method and principal component analysis method are based on feature extraction and data dimension reduction, and multivariate regression models of the two methods showed comparable accuracy (R-2 of DWT and PCA model was 0. 697 1 and 0. 692 4 respectively; RMSE was 0. 605 8 and 0. 554 1 respectively). While the model based on continuous wavelet transform suffered the lowest accuracy and didn't seem to be qualified to inverse LAI It was indicated that the nonlinear regression model with support vector machines method is the most eligible model for estimating winter wheat LAI in the study area.

  • 相关文献

[1]Research on Universality of Least Squares Support Vector Machine Method for Estimating Leaf Area Index of Winter Wheat. Xie Qiao-yun,Huang Wen-jiang,Peng Dai-liang,Xie Qiao-yun,Liang Dong,Huang Lin-sheng,Zhang Dong-yan,Xie Qiao-yun,Liang Dong,Huang Lin-sheng,Zhang Dong-yan,Song Xiao-yu,Yang Gui-jun. 2014

[2]Modeling of Chromium, Copper, Zinc, Arsenic and Lead Using Portable X-ray Fluorescence Spectrometer Based on Discrete Wavelet Transform. Li, Fang,Lu, Anxiang,Wang, Jihua,Li, Fang,Lu, Anxiang,Wang, Jihua,Lu, Anxiang,Wang, Jihua. 2017

[3]Comparative analysis of three regression methods for the winter wheat biomass estimation using hyperspectral measurements. Xingang Xu,Yuanyuan Fu,Guijun Yang,Haikuan Feng,Xiaoyu Song,Jihua Wang. 2013

[4]Stitching of hyper-spectral UAV images based on feature bands selection. L. Xia,R. R. Zhang,L. P. Chen,F. Zhao,H. J. Jiang. 2016

[5]Dynamic monitoring and driving power analysis of LUCC based on remote sensing in Beijing in recent thirty years. Gu, Xiaohe,Guo, Wei,Dong, Yansheng,Wang, Yanchang. 2013

[6]Survey of Support Vector Machine in the Processing of Remote Sensing Image. Li, Su,Wang, Wenchao. 2013

[7]A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth. Qiu, Quan,Qiao, Xiaojun,Zheng, Chenfei,Wang, Wenping,Yu, Jingquan,Shi, Kai,Bai, He. 2017

[8]Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle Hyperspectral Remote Sensing: Analysis of RF, ANN, and SVM Regression Models. Yuan, Huanhuan,Yang, Guijun,Wang, Yanjie,Liu, Jiangang,Yu, Haiyang,Feng, Haikuan,Xu, Bo,Zhao, Xiaoqing,Yang, Xiaodong,Yuan, Huanhuan,Li, Changchun,Wang, Yanjie,Yuan, Huanhuan,Yang, Guijun,Liu, Jiangang,Feng, Haikuan,Yang, Xiaodong,Yang, Guijun,Yu, Haiyang,Xu, Bo,Zhao, Xiaoqing,Yang, Xiaodong. 2017

[9]Geographical classification of apple based on hyperspectral imaging. Guo, Zhiming,Huang, Wenqian,Chen, Liping,Zhao, Chunjiang. 2013

[10]ESTIMATION OF MAIZE PLANTING AREA USING MIXED FIELD DECOMPOSITION OF MULTI-TEMPORAL TM IMAGES. Gu, Xiaohe,Dong, Yansheng,Ma, Li,Dong, Yingying. 2012

[11]Estimating Winter Wheat Leaf Area Index From Ground and Hyperspectral Observations Using Vegetation Indices. Xie, Qiaoyun,Huang, Wenjiang,Zhang, Bing,Dong, Yingying,Xie, Qiaoyun,Chen, Pengfei,Song, Xiaoyu,Pascucci, Simone,Pignatti, Stefano,Laneve, Giovanni. 2016

[12]MONITORING AVAILABLE PHOSPHORUS CONTENT IN SOIL OF CULTIVATED LAND BASED ON HYPERSPECTRAL TECHNOLOGY. Gu, Xiaohe,Wang, Lei,Wang, Lizhi,Fan, Youbo,Yang, Hao,Long, Huiling. 2016

[13]Monitoring Freeze Stress Levels on Winter Wheat from Hyperspectral Reflectance Data Using Principal Component Analysis. Wang Hui-fang,Huo Zhi-guo,Wang Hui-fang,Wang Ji-hua,Dong Ying-ying,Gu Xiao-he. 2014

[14]A Comparison of Regression Techniques for Estimation of Above-Ground Winter Wheat Biomass Using Near-Surface Spectroscopy. Yue, Jibo,Feng, Haikuan,Yang, Guijun,Li, Zhenhai,Yue, Jibo,Yue, Jibo,Yang, Guijun,Li, Zhenhai,Feng, Haikuan,Yang, Guijun,Li, Zhenhai. 2018

[15]The inversion model of soil organic matter of cultivated land based on hyperspectral technology. Gu, Xiaohe,Wang, Yancang,Song, Xiaoyu,Xu, Xingang. 2015

[16]Differentiation of Yellow Rust and Powdery Mildew in Winter Wheat and Retrieving of Disease Severity Based on Leaf Level Spectral Analysis. Yuan Lin,Zhang Jing-cheng,Zhao Jin-ling,Wang Ji-hua,Yuan Lin,Zhang Jing-cheng,Wang Ji-hua,Huang Wen-jiang. 2013

[17]Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses. Zhang, Jingcheng,Huang, Wenjiang,Yuan, Lin,Luo, Juhua,Wang, Jihua,Zhang, Jingcheng,Pu, Ruiliang,Zhang, Jingcheng,Yuan, Lin,Wang, Jihua,Huang, Wenjiang. 2012

[18]Monitoring total nitrogen content in soil of cultivated land based on hyperspectral technology. Gu, Xiaohe,Wang, Lizhi,Zhang, Liyan,Yang, Guijun. 2017

[19]Stitching of hyper-spectral UAV images based on feature bands selection. Xia, L.,Zhang, R. R.,Chen, L. P.,Jiang, H. J.,Xia, L.,Zhang, R. R.,Chen, L. P.,Jiang, H. J.,Xia, L.,Zhang, R. R.,Chen, L. P.,Jiang, H. J.,Xia, L.,Zhang, R. R.,Chen, L. P.,Jiang, H. J.,Zhao, F.. 2016

[20]Analysis of spectral difference between the foreside and backside of leaves in yellow rust disease detection for winter wheat. Yuan, Lin,Zhang, Jing-Cheng,Wang, Ke,Wang, Ji-Hua,Yuan, Lin,Zhang, Jing-Cheng,Wang, Ji-Hua,Zhao, Jin-Ling,Loraamm, Rebecca-W.,Huang, Wen-Jiang.

作者其他论文 更多>>