您好,欢迎访问北京市农林科学院 机构知识库!

A COMPARATIVE ANALYSIS OF SPECTRAL VEGETATION INDICES TO ESTIMATE CROP LEAF AREA INDEX

文献类型: 外文期刊

作者: Fu, Yuanyuan 1 ; Yang, Guijun 1 ; Wang, Jihua 1 ; Feng, Haikuan 1 ;

作者机构: 1.Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China

2.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China

3.Zhejiang Univ, Inst Appl Remote Sensing & Informat Technol, Hangzhou 310029, Zhejiang, Peoples R China

关键词: Leaf Area Index;Spectral Vegetation Indices;Soil Background;Leaf Chlorophyll Concentration;Sensitivity Function

期刊名称:INTELLIGENT AUTOMATION AND SOFT COMPUTING ( 影响因子:1.647; 五年影响因子:1.469 )

ISSN: 1079-8587

年卷期: 2013 年 19 卷 3 期

页码:

收录情况: SCI

摘要: Leaf area index (LAI) is a key variable to reflect crop growth status and forecast crop yield. Many spectral vegetation indices (SVIs) suffer the saturation effect which limits the usefulness of optical remote sensing for crop LAI retrieval. Besides, leaf chlorophyll concentration and soil background reflectance are also two main factors to influence crop LAI retrieval using SVIs. In order to make better use of SVIs for crop LAI retrieval, it is significant to evaluate the performances of SVIs under varying conditions. In this context, PROSPECT and SAILH models were used to simulate a wide range of crop canopy reflectance in an attempt to conduct a comparative analysis. The sensitivity function was introduced to investigate the sensitivity of SVIs over the range of LAI. This sensitivity function is capable of quantifying the detailed relationship between SVIs and LAI. It is different with the regression based statistical parameters, such as coefficient of determination and root mean square, can only evaluate the overall performances of SVIs. The experimental results indicated that (1) LAI = 3 was an appropriate demarcation point for comparative analyses of SVIs; (2) when LAI was no more than three, the variations of soil background had significant negative effects on SVIs. LAI Determining Index (LAIDI), Optimized Soil-adjusted Vegetation Index (OSVI) and Renormalized Difference Vegetation Index (RDVI) were relatively optimal choices for LAI retrieval; (3) when LAI was larger than three, leaf chlorophyll concentration played an important role in influencing the performances of SVIs. Enhanced Vegetation Index 2(EVI2), LAIDI, RDVI, Soil Adjusted Vegetation Index (SAVI), Modified Triangular Vegetation Index 2(MTVI2) and Modified Chlorophyll Absorption Ratio Index 2 (MCARI2) were less affected by leaf chlorophyll concentration and had better performances due to their higher sensitivity to LAI even when LAI reached seven. The analytical results could be used to guide the selection of optimal SVIs for crop LAI retrieval in different phenology periods.

  • 相关文献

[1]Comparative Study on Remote Sensing Invertion Methods for Estimating Winter Wheat Leaf Area Index. Xie Qiao-yun,Huang Wen-jiang,Peng Dai-liang,Zhang Qing,Xie Qiao-yun,Liang Dong,Huang Lin-sheng,Zhang Dong-yan,Cai Shu-hong,Yang Gui-jun. 2014

[2]Estimation and Mapping of Winter Oilseed Rape LAI from High Spatial Resolution Satellite Data Based on a Hybrid Method. Wei, Chuanwen,Huang, Jingfeng,Mansaray, Lamin R.,Liu, Weiwei,Han, Jiahui,Wei, Chuanwen,Huang, Jingfeng,Mansaray, Lamin R.,Liu, Weiwei,Han, Jiahui,Mansaray, Lamin R.,Li, Zhenhai. 2017

[3]ESTIMATION OF LEAF AREA INDEX BY USING MULTI-ANGULAR HYPERSPECTRAL IMAGING DATA BASED ON THE TWO-LAYER CANOPY REFLECTANCE MODEL. Liao, Qinhong,Zhao, Chunjiang,Yang, Guijun,Wang, Jihua,Zhang, Dongyan,Liao, Qinhong,Zhang, Dongyan,Coburn, Craig,Wang, Zhijie. 2013

[4]Research on Universality of Least Squares Support Vector Machine Method for Estimating Leaf Area Index of Winter Wheat. Xie Qiao-yun,Huang Wen-jiang,Peng Dai-liang,Xie Qiao-yun,Liang Dong,Huang Lin-sheng,Zhang Dong-yan,Xie Qiao-yun,Liang Dong,Huang Lin-sheng,Zhang Dong-yan,Song Xiao-yu,Yang Gui-jun. 2014

[5]Transpiration rates of urban trees, Aesculus chinensis. Wang, Hua,Wang, Xiaoke,Zheng, Hua,Ren, Yufen,Ouyang, Zhiyun,Wang, Hua,Zhao, Ping,Gao, Fuyuan.

[6]Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems. Huang, Ni,Niu, Zheng,Zhan, Yulin,Xu, Shiguang,Wu, Chaoyang,Gao, Shuai,Hou, Xuehui,Cai, Dewen,Huang, Ni,Xu, Shiguang,Hou, Xuehui,Cai, Dewen,Tappert, Michelle C.,Huang, Wenjiang.

[7]Estimation of Regional Leaf Area Index by Remote Sensing Inversion of PROSAIL Canopy Spectral Model. Li Shu-min,Li Hong,Zhou Lian-di,Sun Dan-feng. 2009

[8]Assimilation of Remote Sensing and Crop Model for LAI Estimation Based on Ensemble Kalman Filter. Li Rui,Li Cun-jun,Dong Ying-ying,Liu Feng,Wang Ji-hua,Yang Xiao-dong,Pan Yu-chun,Li Rui,Li Rui. 2011

[9]Evaluating the potential of vegetation indices for winter wheat LAI estimation under different fertilization and water conditions. Xie, Qiaoyun,Huang, Wenjiang,Xie, Qiaoyun,Dash, Jadunandan,Song, Xiaoyu,Wang, Renhong,Huang, Linsheng,Zhao, Jinling.

作者其他论文 更多>>