您好,欢迎访问北京市农林科学院 机构知识库!

Using new hyperspectral index to estimate leaf chlorophyll content in winter wheat

文献类型: 外文期刊

作者: Xu, Xingang 1 ; Song, Xiaoyu 1 ; Li, Cunjun 1 ; Wang, Jihua 1 ;

作者机构: 1.Beijing Res Ctr Informat Technol Agr, Beijing, Peoples R China

关键词: leaf chlorophyll conten;normalized reflectance;spectral index;winter wheat

期刊名称:2012 FIRST INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS)

ISSN: 2334-3168

年卷期: 2012 年

页码:

收录情况: SCI

摘要: Leaf chlorophyll content is a key indicator of crop photosynthesis activity, which is correlated with leaf nitrogen concentration, and can serve nitrogen fertilizer decision-making. So it is of significant to estimate chlorophyll content for crop growth diagnosis. In this study, a new hyperspectral index was proposed to estimate leaf chlorophyll content in winter wheat. Hyperspectral reflectance data, covering bands from 350 to 2500nm, were collected using a ground-based ASD spectrometer on winter wheat at different stages from 2008 in rural fields of Beijing, China. Leaf chlorophyll content was obtained by traditional laboratory methods on the same area. First, hyperspectral reflectance data from 400 to 1300nm were normalized, and then a new spectral index, symbolized k(nir), was proposed by a mean of fitting the normalized reflectance ranging from 760 to 920nm to evaluate chlorophyll content in winter wheat in comparison with some existing typical indices. The analysis results showed that k(nir) was the best index for assessing chlorophyll comparing with the existing indices, with R-2 value of 0.51. It indicates that the new spectral index has a good potential for estimating chlorophyll in winter wheat.

  • 相关文献

[1]Monitoring the ratio of leaf carbon to nitrogen in winter wheat with hyperspectral measurements. Xin-gang Xu,Xiao-dong Yang,Xiao-he Gu,Hao Yang,Hai-kuan Feng,Gui-jun Yang,Xiao-yu,Song. 2015

[2]Estimation of water productivity in winter wheat using the AquaCrop model with field hyperspectral data. Jin, Xiuliang,Jin, Xiuliang,Yang, Guijun,Li, Zhenhai,Xu, Xingang,Jin, Xiuliang,Yang, Guijun,Li, Zhenhai,Xu, Xingang,Wang, Jihua,Lan, Yubin. 2018

[3]Monitoring the ratio of leaf carbon to nitrogen in winter wheat with hyperspectral measurements. Xu, Xin-gang,Yang, Xiao-dong,Gu, Xiao-he,Yang, Hao,Feng, Hai-kuan,Yang, Gui-jun,Song, Xiao-yu. 2015

[4]Estimation of Winter Wheat Biomass and Yield by Combining the AquaCrop Model and Field Hyperspectral Data. Jin, Xiuliang,Kumar, Lalit,Li, Zhenhai,Xu, Xingang,Yang, Guijun,Li, Zhenhai,Xu, Xingang,Yang, Guijun,Wang, Jihua. 2016

[5]Assessing the ratio of leaf carbon to nitrogen in winter wheat and spring barley based on hyperspectral data. Xu, Xin-gang,Gu, Xiao-he,Song, Xiao-yu,Xu, Bo,Yu, Hai-yang,Yang, Gui-jun,Feng, Hai-kuan. 2016

[6]ESTIMATING LEAF NITROGEN CONCENTRATION IN BARLEY BY COUPLING HYPERSPECTRAL MEASUREMENTS WITH OPTIMAL COMBINATION PRINCIPLE. Xu, Xingang,Zhao, Chunjiang,Song, Xiaoyu,Yang, Xiaodong,Yang, Guijun. 2014

[7]Associating new spectral features from visible and near infrared regions with optimal combination principle to monitor leaf nitrogen concentration in barley. Xu Xin-Gang,Zhao Chun-Jiang,Wang Ji-Hua,Li Cun-Jun,Yang Xiao-Dong. 2013

[8]Using optimal combination method and in situ hyperspectral measurements to estimate leaf nitrogen concentration in barley. Xu, Xin-gang,Zhao, Chun-jiang,Wang, Ji-hua,Zhang, Jing-cheng,Song, Xiao-yu.

[9]HYPERSPECTRAL IMAGE FOR DISCRIMINATING APHID AND APHID DAMAGE REGION OF WINTER WHEAT LEAF. Luo Juhua,Huang Wenjiang,Guan Qingsong,Zhao Jinling,Zhang Jingcheng. 2013

[10]HYPERSPECTRAL IMAGE FOR DISCRIMINATING APHID AND APHID DAMAGE REGION OF WINTER WHEAT LEAF. Luo Juhua,Huang Wenjiang,Guan Qingsong,Zhao Jinling,Zhang Jingcheng. 2013

[11]Simulation of Winter Wheat Phenology in Beijing Area with DSSAT-CERES Model. Haikuan Feng,Zhenhai Li,Peng He,Xiuliang Jin,Guijun Yang,Haiyang Yu,Fuqin Yang. 2016

[12]CHARACTERIZATION OF POWDERY MILDEW IN WINTER WHEAT USING MULTI-ANGULAR HYPERSPECTRAL MEASUREMENTS. Jinling Zhao,Lin Yuan,Linsheng Huang,Dongyan Zhang,Jingcheng Zhang,Xiaohe Gu. 2013

[13]Retrieval of LAI and leaf chlorophyll content from remote sensing data by agronomy mechanism knowledge to solve the ill-posed inverse problem. Zhenhai Li,Chenwei Nie,Guijun Yang,Xingang Xu,Xiuliang Jin,Xiaohe Gu. 2014

[14]Study the Spatial-Temporal Variation of Wheat Growth Under Different Site-Specific Nitrogen Fertilization Approaches. Bei Cui,Wenjiang Huang,Xiaoyu Song,Huichun Ye,Yingying Dong. 2019

[15]EVALUATION OF ARABLE LAND YIELD POTENTIAL THROUGH REMOTE SENSING MONITORING. Song Xiaoyu,Gu Xiaohe,Wang Jihua,Chang Hong. 2014

[16]SPATIAL VARIABILITY OF WINTER WHEAT GROWTH BASED ON THE INDIVIDUAL INDEX AND THE POPULATION INDEX. Bei Cui,Xiaoyu Song,Wude Yang,Meichen Feng,Jihua Wang. 2014

[17]Estimating Winter Wheat Leaf Area Index From Ground and Hyperspectral Observations Using Vegetation Indices. Xie, Qiaoyun,Huang, Wenjiang,Zhang, Bing,Dong, Yingying,Xie, Qiaoyun,Chen, Pengfei,Song, Xiaoyu,Pascucci, Simone,Pignatti, Stefano,Laneve, Giovanni. 2016

[18]Winter wheat biomass estimation based on canopy spectra. Zheng Ling,Zhu Dazhou,Zhang Baohua,Wang Cheng,Zhao Chunjiang,Zheng Ling,Liang Dong. 2015

[19]MONITORING WINTER WHEAT MATURITY BY HYPERSPECTRAL VEGETATION INDICES. Wang, Qian,Huang, Yuanfang,Wang, Qian,Li, Cunjun,Wang, Jihua,Song, Xiaoyu,Huang, Wenjiang. 2012

[20]Discrimination of yellow rust and powdery mildew in wheat at leaf level using spectral signatures. Yuan, Lin,Zhang, Jingcheng,Zhao, Jinling,Du, Shizhou,Huang, Wenjiang,Wang, Jihua. 2012

作者其他论文 更多>>