您好,欢迎访问山西省农业科学院 机构知识库!

Closing the yield gap could reduce projected greenhouse gas emissions: a case study of maize production in China

文献类型: 外文期刊

作者: Cui, Zhenling 1 ; Yue, Shanchao 1 ; Wang, Guiliang 1 ; Meng, Qingfeng 1 ; Wu, Liang 1 ; Yang, Zhiping 2 ; Zhang, Qiang 2 ;

作者机构: 1.China Agr Univ, Ctr Resources Environm & Food Secur, Beijing 100193, Peoples R China

2.Shanxi Acad Agr Sci, Inst Soil Sci & Fertilizer, Taiyuan 030031, Peoples R China

3.Northwest A&F Univ, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling 712100, Peoples R China

关键词: GHG intensity;increasing yield;maize;N2O emission;nitrogen fertilizer

期刊名称:GLOBAL CHANGE BIOLOGY ( 影响因子:10.863; 五年影响因子:11.716 )

ISSN: 1354-1013

年卷期: 2013 年 19 卷 8 期

页码:

收录情况: SCI

摘要: Although the goal of doubling food demand while simultaneously reducing agricultural environmental damage has become widely accepted, the dominant agricultural paradigm still considers high yields and reduced greenhouse gas (GHG) intensity to be in conflict with one another. Here, we achieved an increase in maize yield of 70% in on-farm experiments by closing the yield gap and evaluated the trade-off between grain yield, nitrogen (N) fertilizer use, and GHG emissions. Based on two groups of N application experiments in six locations for 16 on-farm site-years, an integrated soil-crop system (HY) approach achieved 93% of the yield potential and averaged 14.8Mgha(-1) maize grain yield at 15.5% moisture. This is 70% higher than current crop (CC) management. More importantly, the optimal N rate for the HY system was 250kg Nha(-1), which is only 38% more N fertilizer input than that applied in the CC system. Both the N2O emission intensity and GHG intensity increased exponentially as the N application rate increased, and the response curve for the CC system was always higher than that for the HY system. Although the N application rate increased by 38%, N2O emission intensity and the GHG intensity of the HY system were reduced by 12% and 19%, respectively. These on-farm observations indicate that closing the yield gap alongside efficient N management should therefore be prominent among a portfolio of strategies to meet food demand while reducing GHG intensity at the same time.

  • 相关文献

[1]Molecular Mapping of the Major Resistance Quantitative Trait Locus qHS2.09 with Simple Sequence Repeat and Single Nucleotide Polymorphism Markers in Maize. Weng, Jianfeng,Hao, Zhuanfang,Xie, Chuanxiao,Li, Mingshun,Zhang, Degui,Bai, Li,Liu, Changlin,Zhang, Shihuang,Li, Xinhai,Liu, Xianjun,Wang, Zhenhua,Zhang, Lin,Wang, Jianjun.

[2]Comparison between transgenic maize with exotic betaine aldehyde dehydrogenase (BADH) gene and its untransformed counterpart. Yang, Liyan,Liu, Xiaolu,Guo, Xiaoyang,Sun, Yi,Hao, Yaoshan,Sun, Yi.

[3]Overexpression of a Maize Transcription Factor ZmPHR1 Improves Shoot Inorganic Phosphate Content and Growth of Arabidopsis under Low-Phosphate Conditions. Wang, Xiuhong,Bai, Jianrong,Liu, Huiming,Liu, Huiming,Wang, Xiuhong,Shi, Xiangyuan,Ren, Zhiqiang,Sun, Yi.

[4]Generation of Transgenic Maize by Two Germinating Seed Transformation Methods. Liang, Xue-lian,Liang, Xue-lian,Du, Jian-zhong,Hao, Yao-shan,Cui, Gui-mei,Wang, Yi-xue,Wang, Xiao-qing,Zhang, Huan-huan,Sun, Yi,Sun, Dan-qiong. 2016

[5]Evaluation of maize inbred lines for resistance to pre-harvest aflatoxin and fumonisin contamination in the field. Guo, Baozhu,Ji, Xiangyun,Fountain, Jake C.,Ji, Xiangyun,Ni, Xinzhi,Li, Hong,Abbas, Hamed K.,Lee, Robert D.,Scully, Brian T.. 2017

[6]Transformation of trehalose synthase gene (TPS Gene) into corn inbred line and identification of drought tolerance. Dong Chun-lin,Zhang Ming-yi,Zhang Yan-qin,Yang Li-li,Liang Gai-mei,Sun Jie,Lin Zhong-ping,Gou Jjian-fang. 2011

[7]Cloning and characterization of a novel CBL-interacting protein kinase from maize. Zheng, Jun,Wang, Guoying,Zheng, Jun,Wang, Guoying,Zhao, Jinfeng,Zhao, Jinfeng,Sun, Zhenfei,Guo, Xiying,Dong, Zhigang,Huai, Junling,Gou, Mingyue,He, Junguang,Jin, Yongsheng,Wang, Jianhua,Zhao, Jinfeng,Sun, Zhenfei,Guo, Xiying,Dong, Zhigang,Huai, Junling,Gou, Mingyue,He, Junguang,Jin, Yongsheng,Wang, Jianhua.

[8]Developing insect resistance with fusion gene transformation of chitinase and scorpion toxin gene in maize (Zea mays L). Liu, Ming,Wang, Jingxue,Hao, Yaoshan,Sun, Yi.

作者其他论文 更多>>