您好,欢迎访问广东省农业科学院 机构知识库!

Transformation of Litchi Pericarp-Derived Condensed Tannin with Aspergillus awamori

文献类型: 外文期刊

作者: Lin, Sen 1 ; Li, Qing 2 ; Yang, Bao 1 ; Duan, Xuewu 1 ; Zhang, Mingwei 3 ; Shi, John 4 ; Jiang, Yueming 1 ;

作者机构: 1.Chinese Acad Sci, Key Lab Plant Resource Conservat & Sustainable Ut, South China Bot Garden, Guangdong Prov Key Lab Appl Bot, Guangzhou 510650, Guangdong, Peoples R China

2.Chinese Acad Sci, Wenzhou Inst Biomat & Engn Preparat, Wenzhou 325000, Peoples R China

3.Guangdong Acad Agr Sci, Sericultural & Agri Food Res Inst, Guangdong Key Lab Agr Prod Proc, Key Lab Funct Foods,Minist Agr, Guangzhou 510610, Guangdong, Peoples R China

4.Agr & Agri Food Canada, Guelph Res & Dev Ctr, Guelph, ON N1G 5C9, Canada

关键词: transformation;condensed tannin;A. awamori;litchi pericarp;antioxidant activity

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:5.923; 五年影响因子:6.132 )

ISSN: 1422-0067

年卷期: 2016 年 17 卷 7 期

页码:

收录情况: SCI

摘要: Condensed tannin is a ubiquitous polyphenol in plants that possesses substantial antioxidant capacity. In this study, we have investigated the polyphenol extraction recovery and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of the extracted polyphenol after litchi pericarp is treated with Aspergillus awamori, Aspergillus sojae or Aspergillus oryzae. We have further explored the activity of A. awamori in the formation of condensed tannin. The treatment of A. awamori appeared to produce the highest antioxidant activity of polyphenol from litchi pericarp. Further studies suggested that the treatment of A. awamori releases the non-extractable condensed tannin from cell walls of litchi pericarp. The total extractable tannin in the litchi pericarp residue after a six-time extraction with 60% ethanol increased from 199.92 +/- 14.47-318.38 +/- 7.59 g/g dry weight (DW) after the treatment of A. awamori. The ESI-TOF-MS and HPLC-MS2 analyses further revealed that treatment of A. awamori degraded B-type condensed tannin (condensed flavan-3-ol via C4-C8 linkage), but exhibited a limited capacity to degrade the condensed tannin containing A-type linkage subunits (C4-C8 coupled C2-O-C7 linkage). These results suggest that the treatment of A. awamori can significantly improve the production of condensed tannin from litchi pericarp.

  • 相关文献

[1]Analysis of distribution and pharmacokinetics of litchi pericarp procyanidins in rat plasma and organs by using liquid chromatography-tandem mass spectrometry. Wu, Qian,Li, Shuyi,Sui, Yong,Xie, Bijun,Sun, Zhida,Xiao, Juan.

[2]An efficient protocol for the production of chit42 transgenic Furenzhi banana (Musa spp. AA group) resistant to Fusarium oxysporum. Hu, Chun-Hua,Wei, Yue-Rong,Huang, Yong-Hong,Yi, Gan-Jun,Hu, Chun-Hua,Wei, Yue-Rong,Huang, Yong-Hong,Yi, Gan-Jun. 2013

[3]Comparison of Translocation and Transformation from Soil to Rice and Metabolism in Rats for Four Arsenic Species. Wang, Xu,Geng, Anjing,Wang, Fuhua,Wang, Xu,Li, Qing X.,Geng, Anjing,Li, Hanmin,Wang, Xu,Zhao, Yarong,Wang, Fuhua,Dong, Yan,Fu, Chongyun.

[4]Efficient regeneration and transformation of Spathiphyllum cannifolium. Yu, Bo,Liao, Feixiong,Liu, Jinmei,Sun, Yingbo,Huang, Lili.

[5]Extraction, molecular weight distribution, and antioxidant activity of oligosaccharides from longan (Dimocarpus Longan Lour.) pulp. Lin, Xian,Chen, Jinling,Xiao, Gengsheng,Xu, Yujuan,Tang, Daobang,Wu, Jijun,Wen, Jing,Chen, Weidong. 2016

[6]Optimized ultra-high-pressure-assisted extraction of procyanidins from lychee pericarp improves the antioxidant activity of extracts. Zhang, Ruifen,Zhang, Mingwei,Su, Dongxiao,Zhang, Ruifen,Liu, Lei,Huang, Fei,Dong, Lihong,Deng, Yuanyuan,Zhang, Yan,Wei, Zhencheng,Zhang, Mingwei,Hou, Fangli. 2017

[7]Phenolics and Antioxidant Activity of Mulberry Leaves Depend on Cultivar and Harvest Month in Southern China. Zou, Yuxiao,Sun, Yuanming,Zou, Yuxiao,Liao, Shentai,Shen, Weizhi,Liu, Fan,Tang, Cuiming,Chen, Chung-Yen Oliver. 2012

[8]Effect of carbonic maceration (CM) on mass transfer characteristics and quality attributes of Sanhua plum (Prunus Salicina Lindl.). An, Kejing,Wu, Jijun,Tang, Daobang,Wen, Jing,Fu, Manqin,Xiao, Gengsheng,Xu, Yujuan. 2018

[9]Different effects of extrusion on the phenolic profiles and antioxidant activity in milled fractions of brown rice. Zhang, Ruifen,Khan, Sher Ali,Chi, Jianwei,Wei, Zhencheng,Zhang, Yan,Deng, Yuanyuan,Liu, Lei,Zhang, Mingwei. 2018

[10]Complex enzyme hydrolysis releases antioxidative phenolics from rice bran. Liu, Lei,Wen, Wei,Zhang, Ruifen,Wei, Zhencheng,Deng, Yuanyuan,Xiao, Juan,Zhang, Mingwei. 2017

[11]Evaluation of Biosynthesis, Accumulation and Antioxidant Activityof Vitamin E in Sweet Corn (Zea mays L.) during Kernel Development. Xie, Lihua,Liu, Haiying,Guo, Xinbo,Yu, Yongtao,Mao, Jihua,Hu, Jian Guang,Yu, Yongtao,Mao, Jihua,Hu, Jian Guang,Li, Tong,Liu, Rui Hai. 2017

[12]In vitro Antioxidant and Acetylcholinesterase Inhibitory Activities of the Sesquiterpenes of a Symbiotic Actinomycete Streptomyces sp from South China Sea. Wen, Lu,Chen, Gang,Zhang, Shichang,You, Tinghuo,Fu, Yuhong,Yao, Xiangcao,Chen, Gang,Liu, Fan. 2013

[13]A Comparison of the Chemical Composition, In Vitro Bioaccessibility and Antioxidant Activity of Phenolic Compounds from Rice Bran and Its Dietary Fibres. Zhao, Guanghe,Zhang, Ruifen,Dong, Lihong,Huang, Fei,Liu, Lei,Deng, Yuanyuan,Ma, Yongxuan,Zhang, Yan,Wei, Zhencheng,Xiao, Juan,Zhang, Mingwei,Zhao, Guanghe,Zhang, Ruifen. 2018

[14]Particle size of insoluble dietary fiber from rice bran affects its phenolic profile, bioaccessibility and functional properties. Zhao, Guanghe,Zhang, Ruifen,Zhao, Guanghe,Zhang, Ruifen,Dong, Lihong,Huang, Fei,Tang, Xiaojun,Wei, Zhencheng,Zhang, Mingwei. 2018

[15]Evolution of the antioxidant capacity and phenolic contents of persimmon during fermentation. Zou, Bo,Wu, Jijun,Yu, Yuanshan,Xiao, Gengsheng,Xu, Yujuan. 2017

[16]Phenolic Profiles and Antioxidant Activity of Litchi (Litchi Chinensis Sonn.) Fruit Pericarp from Different Commercially Available Cultivars. Li, Wu,Liang, Hong,Zhang, Ming-Wei,Zhang, Rui-Fen,Deng, Yuan-Yuan,Wei, Zhen-Cheng,Zhang, Yan,Tang, Xiao-Jun. 2012

[17]Effect of Light- and Dark-Germination on the Phenolic Biosynthesis, Phytochemical Profiles, and Antioxidant Activities in Sweet Corn (Zea mays L.) Sprouts. Xiang, Nan,Guo, Xinbo,Liu, Fengyuan,Li, Quan,Brennan, Charles Stephen,Hu, Jianguang,Hu, Jianguang,Brennan, Charles Stephen. 2017

[18]Phenolic Composition and Antioxidant Activity in Seed Coats of 60 Chinese Black Soybean (Glycine max L. Merr.) Varieties. Zhang, Rui Fen,Zhang, Fang Xuan,Zhang, Ming Wei,Wei, Zhen Cheng,Yang, Chun Ying,Zhang, Yan,Tang, Xiao Jun,Deng, Yuan Yuan,Chi, Jian Wei. 2011

[19]Different thermal drying methods affect the phenolic profiles, their bioaccessibility and antioxidant activity in Rhodomyrtus tomentosa (Ait.) Hassk berries. Zhao, Guanghe,Zhang, Ruifen,Liu, Lei,Deng, Yuanyuan,Wei, Zhencheng,Zhang, Yan,Ma, Yongxuan,Zhang, Mingwei,Zhao, Guanghe,Zhang, Ruifen,Liu, Lei,Deng, Yuanyuan,Wei, Zhencheng,Zhang, Yan,Ma, Yongxuan,Zhang, Mingwei,Zhao, Guanghe,Zhang, Ruifen.

[20]Antioxidant Activity of Polysaccharide-enriched Fractions Extracted from Pulp Tissue of Litchi Chinensis Sonn.. Kong, Fanli,Zhang, Mingwei,Liao, Sentai,Chi, Jianwei,Wei, Zhencheng,Kong, Fanli,Yu, Shujuan. 2010

作者其他论文 更多>>