您好,欢迎访问广东省农业科学院 机构知识库!

Facile fabrication of rice husk based silicon dioxide nanospheres loaded with silver nanoparticles as a rice antibacterial agent

文献类型: 外文期刊

作者: Cui, Jianghu 1 ; Liang, You 3 ; Yang, Desong 3 ; Liu, Yingliang 1 ;

作者机构: 1.South China Agr Univ, Coll Mat & Energy, Guangzhou 510642, Guangdong, Peoples R China

2.Guangdong Inst Ecoenvironm & Soil Sci, Guangdong Key Lab Agr Environm Pollut Integrated, Guangzhou 510650, Guangdong, Peoples R China

3.Shihezi Univ, Coll Agr, Shihezi 832000, Xinjiang, Peoples R China

期刊名称:SCIENTIFIC REPORTS ( 影响因子:4.379; 五年影响因子:5.133 )

ISSN: 2045-2322

年卷期: 2016 年 6 卷

页码:

收录情况: SCI

摘要: Bacterial leaf blight of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major disease of rice, leading to reduction in production by 10-50%. In order to control this disease, various chemical bactericides have been used. Wide and prolonged application of chemical bactericides resulted in the resistant strain of Xoo that was isolated from rice. To address this problem, we were searching for an environmentally friendly alternative to the commonly used chemical bactericides. In this work, we demonstrate that silicon dioxide nanospheres loaded with silver nanoparticles (SiO2-Ag) can be prepared by using rice husk as base material precursor. The results of the antibacterial tests showed that SiO2-Ag composites displayed antibacterial activity against Xoo. At cellular level, the cell wall/membrane was damaged and intercellular contents were leaked out by slow-releasing of silver ions from SiO2-Ag composites. At molecular level, this composite induced reactive oxygen species production and inhibited DNA replication. Based on the results above, we proposed the potential antibacterial mechanism of SiO2-Ag composites. Moreover, the cytotoxicity assay indicated that the composites showed mild toxicity with rice cells. Thus, this work provided a new strategy to develop biocide derived from residual biomass.

  • 相关文献
作者其他论文 更多>>