Molecular tagging of QTLs for fiber quality and yield in the upland cotton cultivar Acala-Prema
文献类型: 外文期刊
作者: Ning Zhiyuan 1 ; Chen, Hong 2 ; Mei, Hongxian 1 ; Zhang, Tianzhen 1 ;
作者机构: 1.Nanjing Agr Univ, MOE Hybrid Cotton R&D Engn Ctr, State Key Lab Crop Genet & Germplasm Enhancement, Nanjing 210095, Jiangsu, Peoples R China
2.Xinjiang Acad Agr & Reclamat Sci, Cotton Res Inst, Shihezi 832000, Xinjiang, Peoples R China
关键词: QTL mapping;Fiber strength;Fiber length;Recombinant inbred lines;Cotton breeding
期刊名称:EUPHYTICA ( 影响因子:1.895; 五年影响因子:2.181 )
ISSN: 0014-2336
年卷期: 2014 年 195 卷 1 期
页码:
收录情况: SCI
摘要: Cotton is a high-value per acre crop that is produced as a raw material for the textile industry. With the development of new technologies in the textile industry, much attention has been paid to fiber quality in conjunction with yield. The introgression cultivar "Acala Prema" is extensively planted in the Carolina/USA for its good fiber qualities, high yields and tolerance to Verticillium wilt. To conduct QTL mapping for fiber quality and yield in Acala-Prema, we developed a population of 180 recombinant inbred lines (RILs) from a single seed derived from a cross between this line and Chinese cultivar 86-1. We examined the yield performance of the RILs in five Chinese environments and fiber qualities in seven Chinese environments. A genetic linkage map comprising 279 loci was constructed using this RIL population, chiefly with SSR markers, and QTLs were repeatedly identified across diverse environments using the composite interval mapping method. A total of 86 nonredundant QTLs for yield and its components and fiber qualities were independently detected in five or seven environments; Prema alleles were responsible for the increase in trait values for 46 QTLs, while 86-1 was responsible for 40 QTLs. Notably, we detected the stable fiber strength QTL qFS-D3-1, which explained 4.51-17.55 % of PV, with LOD scores ranging from 2.83 to 7.09, and the fiber length qFL-D11-1, which explained 10.02-25.34 % of the PV. Eighteen environment epistatic QTLs were also detected. The QTLs detected in this study provide new information for improving fiber quality and may be especially valuable for marker-assisted selection.
- 相关文献
作者其他论文 更多>>
-
Genomic insights into the genetic basis of cotton breeding in China
作者:Li, Yiqian;Si, Zhanfeng;Shi, Zhuolin;Chen, Jinwen;Qi, Guoan;Jin, Shangkun;Han, Zegang;Gao, Wenhao;Tian, Yue;Fang, Lei;Hu, Yan;Zhang, Tianzhen;Wang, Guoping;Tian, Yue;Mao, Yun;Zhu, Xiefei;Tian, Yue;Chen, Hong
关键词:cotton; MAGIC population; GWAS; whole-genome sequencing; pleiotropic loci; breeding history
-
Genome-wide artificial introgressions of Gossypium barbadense into G. hirsutum reveal superior loci for simultaneous improvement of cotton fiber quality and yield traits
作者:Li, Shaoqi;Kong, Linglei;Xiao, Xianghui;Liu, Aiying;Li, Junwen;Gong, Juwu;Gong, Wankui;Ge, Qun;Shang, Haihong;Pan, Jingtao;Lu, Quanwei;Shi, Yuzhen;Yuan, Youlu;Li, Shaoqi;Zhang, Yuanming;Yuan, Youlu;Li, Pengtao;Lu, Quanwei;Chen, Hong;Peng, Yan
关键词:Interspecific introgression; Cotton CSSLs; Kmer bin; Fiber quality and yield; Simultaneous improvement; Superior loci
-
Genomic insights into genetic improvement of upland cotton in the world's largest growing region
作者:Han, Zegang;Cao, Yiwen;He, Lu;Si, Zhanfeng;Hu, Yan;Liu, Fengjun;Zang, Yihao;Zhao, Ting;Fang, Lei;Zhang, Tianzhen;Chen, Hong;Lin, Hai;Ning, Xinzhu;Li, Jilian;Ma, Qi;Cao, Yiwen;Hu, Yan;Fang, Lei;Zhang, Tianzhen;Zhu, Xiefei
关键词:Genetic improvement; Population genomics; Gossypium hirsutum; Northwest Inland Region
-
Identification of elite fiber quality loci in upland cotton based on the genotyping-by-target-sequencing technology
作者:Chen, Hong;Ma, Qi;Dong, Chengguang;Ning, Xinzhu;Li, Jilian;Lin, Hai;Xu, Shouzhen;Song, Qingping;Han, Zegang;Li, Yiqian;Hu, Yan;Si, Zhanfeng
关键词:genotyping-by-target-sequencing (GBTS); upland cotton; fiber quality; association studies; single nucleotide polymorphism (SNP)
-
Genome-wide quantitative trait loci reveal the genetic basis of cotton fibre quality and yield-related traits in a Gossypium hirsutum recombinant inbred line population
作者:Zhang, Zhen;Li, Junwen;Jamshed, Muhammad;Shi, Yuzhen;Liu, Aiying;Gong, Juwu;Wang, Shufang;Zhang, Jianhong;Sun, Fuding;Jia, Fei;Ge, Qun;Fan, Liqiang;Zhang, Zhibin;Pan, Jingtao;Fan, Senmiao;Wang, Yanling;Liu, Ruixian;Deng, Xiaoying;Zou, Xianyan;Jiang, Xiao;Liu, Ping;Iqbal, Muhammad Sajid;Zhang, Chaojun;Shang, Haihong;Gong, Wankui;Yuan, Youlu;Xu, Aixia;Huang, Jinyong;Lu, Quanwei;Li, Pengtao;Zhang, Chuanyun;Zou, Juan;Chen, Hong;Tian, Qin;Jia, Xinhe;Wang, Baoqin;Ai, Nijiang;Feng, Guoli;Wang, Yumei;Hong, Mei;Li, Shilin;Lian, Wenming;Wu, Bo;Hua, Jinping
关键词:upland cotton; consensus genetic map; fibre quality; fibre yield; QTL clusters; genetic correlation; gene expression level
-
Genome-wide quantitative trait loci reveal the genetic basis of cotton fibre quality and yield-related traits in a Gossypium hirsutum recombinant inbred line population
作者:Zhang, Zhen;Li, Junwen;Jamshed, Muhammad;Shi, Yuzhen;Liu, Aiying;Gong, Juwu;Wang, Shufang;Zhang, Jianhong;Sun, Fuding;Jia, Fei;Ge, Qun;Fan, Liqiang;Zhang, Zhibin;Pan, Jingtao;Fan, Senmiao;Wang, Yanling;Liu, Ruixian;Deng, Xiaoying;Zou, Xianyan;Jiang, Xiao;Liu, Ping;Iqbal, Muhammad Sajid;Zhang, Chaojun;Shang, Haihong;Gong, Wankui;Yuan, Youlu;Xu, Aixia;Huang, Jinyong;Lu, Quanwei;Li, Pengtao;Zhang, Chuanyun;Zou, Juan;Chen, Hong;Tian, Qin;Jia, Xinhe;Wang, Baoqin;Ai, Nijiang;Feng, Guoli;Wang, Yumei;Hong, Mei;Li, Shilin;Lian, Wenming;Wu, Bo;Hua, Jinping
关键词:upland cotton; consensus genetic map; fibre quality; fibre yield; QTL clusters; genetic correlation; gene expression level
-
Identifying Functional Genes Influencing Gossypium hirsutum Fiber Quality
作者:Dong, Chengguang;Wang, Juan;Yu, Yu;Zhou, Xiaofeng;Ma, Xiaomei;Li, Baocheng;Chen, Hong;Ju, Longzhen;Mei, Gaofu;Han, Zegang;Si, Zhanfeng;Zhang, Tianzhen
关键词:upland cotton; fiber quality; genome-wide association study; SNP genotyping array; candidate genes