Heat-Stable Antifungal Factor (HSAF) Biosynthesis in Lysobacter enzymogenes Is Controlled by the Interplay of Two Transcription Factors and a Diffusible Molecule
文献类型: 外文期刊
作者: Su, Zhenhe 1 ; Han, Sen 2 ; Fu, Zheng Qing 4 ; Qian, Guoliang 2 ; Liu, Fengquan 1 ;
作者机构: 1.Jiangsu Acad Agr Sci, Inst Plant Protect, Nanjing, Jiangsu, Peoples R China
2.Nanjing Agr Univ, Coll Plant Protect, Nanjing, Jiangsu, Peoples R China
3.Nanjing Agr Univ, Key Lab Integrated Management Crop Dis & Pests, Nanjing, Jiangsu, Peoples R China
4.Univ South Carolina, Dept Biol Sci, Columbia, SC USA
关键词: 4-HBA;HSAF;Lysobacter;MarR
期刊名称:APPLIED AND ENVIRONMENTAL MICROBIOLOGY ( 影响因子:4.792; 五年影响因子:5.26 )
ISSN: 0099-2240
年卷期: 2018 年 84 卷 3 期
页码:
收录情况: SCI
摘要: Lysobacter enzymogenes is a Gram-negative, environmentally ubiquitous bacterium that produces a secondary metabolite, called heat-stable antifungal factor (HSAF), as an antifungal factor against plant and animal fungal pathogens. 4-Hydroxybenzoic acid (4-HBA) is a newly identified diffusible factor that regulates HSAF synthesis via L. enzymogenes LysR (LysRLe), an LysR-type transcription factor (TF). Here, to identify additional TFs within the 4-HBA regulatory pathway that control HSAF production, we reanalyzed the LenB2-based transcriptomic data, in which LenB2 is the enzyme responsible for 4-HBA production. This survey led to identification of three TFs (Le4806, Le4969, and Le3904). Of them, LarR (Le4806), a member of the MarR family proteins, was identified as a new TF that participated in the 4-HBA-dependent regulation of HSAF production. Our data show the following: (i) that LarR is a downstream component of the 4-HBA regulatory pathway controlling the HSAF level, while LysRLe is the receptor of 4-HBA; (ii) that 4-HBA and LysRLe have opposite regulatory effects on larR transcription whereby larR transcript is negatively modulated by 4-HBA while LysRLe, in contrast, exerts positive transcriptional regulation by directly binding to the larR promoter without being affected by 4-HBA in vitro; (iii) that LarR, similar to LysRLe, can bind to the promoter of the HSAF biosynthetic gene operon, leading to positive regulation of HSAF production; and (iv) that LarR and LysRLe cannot interact and instead control HSAF biosynthesis independently. These results outline a previously uncharacterized mechanism by which biosynthesis of the antibiotic HSAF in L. enzymogenes is modulated by the interplay of 4-HBA, a diffusible molecule, and two different TFs. IMPORTANCE Bacteria use diverse chemical signaling molecules to regulate a wide range of physiological and cellular processes. 4-HBA is an "old" chemical molecule that is produced by diverse bacterial species, but its regulatory function and working mechanism remain largely unknown. We previously found that 4-HBA in L. enzymogenes could serve as a diffusible factor regulating HSAF synthesis via LysRLe. Here, we further identified LarR, an MarR family protein, as a second TF that participates in the 4-HBA-dependent regulation of HSAF biosynthesis. Our results dissected how LarR acts as a protein linker to connect 4-HBA and HSAF synthesis, whereby LarR also has cross talk with LysRLe. Thus, our findings not only provide fundamental insight regarding how a diffusible molecule (4-HBA) adopts two different types of TFs for coordinating HSAF biosynthesis but also show the use of applied microbiology to increase the yield of the antibiotic HSAF by modification of the 4-HBA regulatory pathway in L. enzymogenes.
- 相关文献
作者其他论文 更多>>
-
OsPRMT5 methylates OsPAL1 to promote rice resistance, hindered by a Xanthomonas oryzae effector
作者:Sheng, Cong;Wang, Bo;Chen, Wenchan;Guo, Baodian;Zhao, Yancun;Liu, Fengquan;Li, Kaihuai;Liu, Fengquan;Wang, Bo;Chen, Wenchan;Qiao, Lulu;Zhao, Hongwei
关键词:effector; OsPAL1; OsPRMT5; protein arginine methylation; rice bacterial blight; SA
-
Sigma factor 70 RpoD contributes to virulence by regulating cell motility, oxidative stress tolerance, and manipulating the expression of hrpG and hrpX in Xanthomonas oryzae pv. oryzae
作者:Xu, Zhizhou;Liu, Fengquan;Liu, Fengquan;Xu, Zhizhou;Wang, Bo;Guo, Baodian;Sheng, Cong;Zhao, Yangyang;Tang, Bao;Zhao, Yancun;Liu, Fengquan;Wu, Guichun
关键词:Oryza sativa; sigma factor; pathogenicity; transcriptional regulation; type III secretion system
-
Apoplastic proteomic reveals Colletotrichum fructicola effector CfXyn11A recognized by tobacco and suppressed by pear in the apoplast
作者:Han, Chenyang;Tao, Shutian;Xie, Zhihua;Zhang, Shaoling;Liu, Fengquan;Liu, Fengquan
关键词:
Colletotrichum fructicola ; Pear; Apoplastic plant-microbe interaction; Fungal effector; CfXyn11A -
Lysobacter enzymogenes: A fully armed biocontrol warrior
作者:Lin, Long;Shao, Xiaolong;Yang, Yicheng;Murero, Aprodisia Kavutu;Wang, Limin;Han, Sen;Su, Zhenhe;Qian, Guoliang;Xu, Gaoge;Zhao, Yangyang;Xu, Kangwen;Liu, Fengquan;Han, Sen;Xu, Kangwen;Yang, Mingming;Liao, Jinxing;Li, Kaihuai;Liu, Fengquan
关键词:Lysobacter enzymogenes; antimicrobial metabolites; loss of flagella; type IV secretion system
-
A temperature-responsive regulator that enhances virulence in the kiwifruit canker pathogen Pseudomonas syringae pv. actinidiae
作者:He, Xueting;Zhang, Yifei;Xu, Chenbei;Fu, Kaidi;Zhang, Tiantian;Chen, Tingtao;Murero, Aprodisia;Shao, Xiaolong;Qian, Guoliang;Ding, Yiqing;Ding, Yiqing;Ding, Yiqing;Xu, Yuan;Chen, Cheng;Li, Li;Zhong, Caihong;Huang, Lili;Deng, Xin;Deng, Xin
关键词:Kiwifruit canker disease; Pseudomonas syringae pv. actinidae; Low temperature; Heat shock protein; HrpL; Type III secretion system
-
Kasugamycin disrupts membrane transport and reduces virulence in Pectobacterium aroidearum to control konjac soft rot
作者:Xiong, Chunlan;Zhou, Xue;Zhu, Yu;Du, Xiaojuan;Li, Kaihuai;Liu, Fengquan;Xiong, Chunlan;Zhou, Xue;Zhu, Yu;Du, Xiaojuan;Li, Kaihuai;Liu, Fengquan;Tu, Yupei;Li, Kaihuai;Liu, Fengquan
关键词:Konjac; Soft rot;
Pectobacterium aroidearum ; Kasugamycin; Antibacterial activity -
First Report of Bacterial Fruit Blotch Caused by Kosakonia cowanii on Trichosanthis fructus in Jiangsu Province, China
作者:Chen, Xian;Tang, Bao;Zhao, Yancun;Liu, Fengquan;Chen, Xian;Tang, Bao;Laborda, Pedro
关键词:bacterial fruit blotch; Kosakonia cowanii; Trichosanthis fructus



