您好,欢迎访问江苏省农业科学院 机构知识库!

Malonylome analysis in developing rice (Oryza saliva) seeds suggesting that protein lysine malonylation is well-conserved and overlaps with acetylation and succinylation substantially

文献类型: 外文期刊

作者: Mujahid, Hana 1 ; Meng, Xiaoxi 1 ; Xing, Shihai 1 ; Peng, Xiaojun 2 ; Wang, Cailin 3 ; Peng, Zhaohua 1 ;

作者机构: 1.Mississippi State Univ, Dept Biochem Mol Biol Entomol & Plant Pathol, Starkville, MS 39762 USA

2.Jingjie PTM Biolab Co Ltd, Dept Bioinformat, Hangzhou 310018, Zhejiang, Peoples R China

3.Jiangsu Acad Agr Sci, Inst Crop Sci, Nanjing 210014, Jiangsu, Peoples R China

关键词: Lysine malonylation;Post-translational modification;Malonylome;Plant;Rice;Seed

期刊名称:JOURNAL OF PROTEOMICS ( 影响因子:4.044; 五年影响因子:4.02 )

ISSN: 1874-3919

年卷期: 2018 年 170 卷

页码:

收录情况: SCI

摘要: In recent years, lysine malonylation has garnered wide spread interest due to its potential regulatory roles. While studies have been performed in bacteria, mouse, and human, the involvement and the biological function of this modification in plant are still largely unknown. We examined the global proteome profile of lysine malonylation in developing rice seeds using affinity enrichment followed by LC-MS/MS analysis. We identified 421 malonylated lysine sites across 247 proteins. Functional analyses showed predominant presence of malonylated proteins in metabolic processes, including carbon metabolism, glycolysis/gluconeogenesis, TCA cycle, as well as photosynthesis. Malonylation was also detected on enzymes in starch biosynthesis pathway in developing rice seeds. In addition, we found a remarkable overlap among the malonylated, succinylated and acetylated sites identified in rice. Furthermore, malonylation at conserved sites of homologous proteins was observed across organisnis of different kingdoms, including mouse, human, and bacteria. Finally, distinct motifs were identified when the rice malonylation sites were analyzed and conserved motifs were observed from bacterium to human and rice. Our results provide an initial understanding of the lysine malonylome in plants. The study has critical reference value for future understanding of the biological function of protein lysine malonylation in plants. Biological significance: Lysine malonylation is a newly discovered acylation with functional potential in regulating cellular metabolisms and activities. However, the malonylation status has not been reported in plants. Grain yield and quality, mainly determined during cereal seed development, are closely related to food security, human health and economic value. To evaluate malonylation level in plants and the possible regulatory functions of malonylation in seed development, we conducted comprehensive analyses of malonylome in developing rice seeds. A total of 421 malonylated lysine sites from 247 proteins were identified, which involved in multiple critical metabolic processes, including central carbon metabolism, lipid metabolism, photosynthesis, and starch biosynthesis. We found that charged amino acids, lysine and arginine, were the preferred residues in positions flanking the modified lysines. Highly conserved modification sites on both histone and non-histone proteins were observed among different organisms through sequence alignment analysis. More interestingly, a large number of modification sites shared by malonylation, acetylation and succinylation were identified in rice. The study presents a comprehensive understanding of malonylome in plants, which will serve as an initial platform for further investigation of the functions of lysine malonylation, especially in cereal seeds development.

  • 相关文献

[1]Proteome-wide lysine acetylation identification in developing rice (Oryza sativa) seeds and protein co-modification by acetylation, succinylation, ubiquitination, and phosphorylation. Meng, Xiaoxi,Lv, Yuanda,Mujahid, Hana,Peng, Zhaohua,Lv, Yuanda,Zhao, Han,Edelmann, Mariola J.,Peng, Xiaojun. 2018

[2]One-step reverse transcription loop-mediated isothermal amplification for the rapid detection of cucumber green mottle mosaic virus. Wei, Qi-wei,Zhang, Wen-na,Wu, Jian-yan,Charimbu, Miriam Karwitha,Hu, Bai-shi,Tao, Xiao-rong,Liu, Yong,Tan, Xin-qiu,Hu, Bai-shi,Cheng, Zhao-bang,Yu, Cui. 2013

[3]Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza sativa L.). Tang, Ri-Sheng,Zheng, Jian-Chu,Jin, Zhi-Qing,Zhang, Dong,Huang, Hong,Chen, Liu-Gen.

[4]Whole-genome expression analysis of Rice black-streaked dwarf virus in different plant hosts and small brown planthopper. Xu, Qiufang,Ni, Haiping,Zhang, Jinfeng,Lan, Ying,Ren, Chunmei,Zhou, Yijun,Xu, Qiufang,Lan, Ying,Ren, Chunmei,Zhou, Yijun,Ni, Haiping.

[5]Practice and thoughts on developing hybrid rice for super high yield by exploiting intersubspecific heterosis. Zou Jiang-shi,Lu Chuan-gen. 2009

[6]Functional Marker Development and Effect Analysis of Grain Size Gene GW2 in Extreme Grain Size Germplasm in Rice. Zhang Ya-dong,Zheng Jia,Liang Yan-li,Zhao Chun-fang,Chen Tao,Zhao Qing-yong,Zhu Zhen,Zhou Li-hui,Yao Shu,Zhao Ling,Yu Xing,Wang Cai-lin. 2015

[7]Correlation between appearance of embryogenic cells and the IAA levels in rice somatic cell culture. Chen, YF,Zhou, X,Tang, RS,Zhang, JY,Mei, CS. 1998

[8]Identification of QTL Associated with Nitrogen Uptake and Nitrogen Use Efficiency Using High Throughput Genotyped CSSLs in Rice (Oryza sativa L.). Zhou, Yong,Tao, Yajun,Tang, Dongnan,Zhong, Jun,Wang, Yi,Yuan, Qiumei,Yu, Xiaofeng,Zhang, Yan,Wang, Yulong,Liang, Guohua,Dong, Guichun,Wang, Jun. 2017

[9]Changes in unsaturated levels of fatty acids in thylakoid PSII membrane lipids during chilling-induced resistance in rice. Zhu, Su-Qin,Yu, Chun-Mei,Liu, Xin-Yan,Ji, Ben-Hua,Jiao, De-Mao. 2007

[10]Oscyp71Z2 involves diterpenoid phytoalexin biosynthesis that contributes to bacterial blight resistance in rice. Li, Wenqi,Shao, Min,Qian, Guoliang,Liu, Fengquan,Li, Wenqi,Yang, Jie,Zhong, Weigong,Li, Wenqi,Shao, Min,Qian, Guoliang,Liu, Fengquan,Okada, Kazunori,Yamane, Hisakazu. 2013

[11]Regulation of ATG6/Beclin-1 homologs by abiotic stresses and hormones in rice (Oryza sativa L.). Rana, R. M.,Dong, S.,Huang, J.,Zhang, H. S.,Rana, R. M.,Ali, Z.,Ali, Z.. 2012

[12]Morphology and photosynthetic enzyme activity of maize phosphoenolpyruvate carboxylase transgenic rice. Li, W. C.,Wang, J.,Sun, Y. L.,Ji, S. D.,Guo, S. W.. 2015

[13]Identification of an active Mutator-like element (MULE) in rice (Oryza sativa). Gao, Dongying,Gao, Dongying. 2012

[14]Verification and evaluation of grain QTLs using RILs from TD70 x Kasalath in rice. Zhang, Y. D.,Liang, Y. L.,Wang, C. L.,Zhang, Y. D.,Zheng, J.,Wang, C. L.,Liang, Z. K.,Peng, Z. H.. 2015

[15]Rice growth monitoring using simulated compact polarimetric C band SAR. Yang, Zhi,Li, Kun,Liu, Long,Shao, Yun,Yang, Zhi,Liu, Long,Brisco, Brian,Li, Weiguo. 2014

[16]Simulating the optimal growing season of rice in the Yangtze River Valley and its adjacent area, China. Huang, Y,Gao, LZ,Jin, ZQ,Chen, H. 1998

[17]Physiological basis of photosynthetic tolerance to photooxidation and shading in rice. Li, X,Jiao, DM. 2000

[18]Comparative Proteomic Analysis of Susceptible and Resistant Rice Plants during Early Infestation by Small Brown Planthopper. Chen, Jianping,Dong, Yan,Yang, Yong,Wang, Xuming,Yu, Chulang,Zhou, Jie,Yan, Chengqi,Chen, Jianping,Fang, Xianping,Fang, Xianping,Xue, Gang-Ping,Chen, Xian,Zhang, Weilin,Mei, Qiong,Fang, Wang. 2017

[19]Genetic and molecular analysis of a purple sheath somaclonal mutant in japonica rice. Gao, Dongying,He, Bing,Sun, Lihua,Zhou, Yihong. 2011

[20]Performance and Analysis of a Model for Describing Layered Leaf Area Index of Rice. Lue Chuan-gen,Yao Ke-min,Hu Ning. 2011

作者其他论文 更多>>