您好,欢迎访问江苏省农业科学院 机构知识库!

Comparing two approaches for introgression of germplasm from Aegilops tauschii into common wheat

文献类型: 外文期刊

作者: Cox, Thomas S. 1 ; Wu, Jizhong 1 ; Wang, Shuwen 1 ; Cai, Jin 1 ; Zhong, Qiaofeng 1 ; Fu, Bisheng 1 ;

作者机构: 1.Jiangsu Acad Agr Sci, Inst Crop Germplasm & Biotechnol, Nanjing 210014, Jiangsu, Peoples R China

2.Land Inst, 2440 E Water Well Rd, Salina, KS 67401 USA

关键词: Aegilops tauschii;Direct hybridization;Origin of wheat;Synthetic hexaploid;Triticum aestivum;Wheat breeding

期刊名称:CROP JOURNAL ( 影响因子:4.407; 五年影响因子:5.687 )

ISSN: 2095-5421

年卷期: 2017 年 5 卷 5 期

页码:

收录情况: SCI

摘要: Allelic diversity in the wild grass Aegilops tauschii is vastly greater than that in the D genome of common wheat (Triticum aestivum), of which Ae. tauschii is the source. Since the 1980s, there have been numerous efforts to harness a much larger share of Ae. tauschii's extensive and highly variable gene pool for wheat improvement. Those efforts have followed two distinct approaches: production of amphiploids, known as "synthetic hexaploids," between T. turgidum and Ae. tauschii, and direct hybridization between T. aestivum and Ae. tauschii; both approaches then involve backcrossing to T. aestivum. Both synthetic hexaploid production and direct hybridization have led to the transfer of numerous new genes into common wheat that confer improvements in many traits. This work has led to release of improved cultivars in China, the United States, and many other countries. Each approach to D-genome improvement has advantages and disadvantages. For example, production of synthetic hexaploids can incorporate useful germplasm from both T. turgidum and Ae. tauschii, thereby enhancing the A, B, and D genomes; on the other hand, direct hybridization rapidly restores the recurrent parent's A and B genomes and avoids incorporation of genes with adverse effects on threshability, hybrid necrosis, vernalization response, milling and baking quality, and other traits, which are often transferred when T. turgidum is used as a parent. Choice of method will depend in part on the type of wheat being developed and the target environment. However, more extensive use of the so-far underexploited direct hybridization approach is especially warranted. (C) 2017 Crop Science Society of China and Institute of Crop Science, CAAS. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

  • 相关文献

[1]A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Bai, Gui-Hua,Chen, Cui-Xia,Cai, Shi-Bin,Cai, Shi-Bin. 2008

[2]Quantitative trait loci for Aluminum resistance in wheat cultivar Chinese Spring. Ma, Hong-Xiang,Bai, Gui-Hua,Lu, Wei-Zhong. 2006

[3]Selection and genetic improvement of pollen fertility restorer lines with Triticum timopheevii, cytoplasm in common wheat. Zhou, WC,Zhao, YH,Zou, ML,Wang, SW. 1999

[4]Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease. Liu, Xin,Yang, Lihua,Zhou, Xianyao,Lu, Yan,Zhang, Zengyan,Yang, Lihua,Ma, Lingjian,Zhou, Miaoping,Ma, Hongxiang.

[5]Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Li, Zhao,Zhang, Zengyan,Du, Lipu,Xu, Huijun,Xin, Zhiyong,Li, Zhao,Zhou, Miaoping,Ren, Lijuan,Zhang, Boqiao.

[6]The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis. Zhu, Xiuliang,Yang, Kun,Wei, Xuening,Rong, Wei,Du, Lipu,Ye, Xingguo,Qi, Lin,Zhang, Zengyan,Zhang, Qiaofeng.

[7]An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense- and stress-related genes. Liu, Xin,Wang, Xindong,Zhou, Xianyao,Ye, Xingguo,Wei, Xuening,Zhou, Miaoping. 2012

[8]Effects of plant height on type I and type II resistance to fusarium head blight in wheat. Yan, W.,Li, H. B.,Liu, C. J.,Yan, W.,Cai, S. B.,Ma, H. X.,Rebetzke, G. J.,Liu, C. J..

[9]Quantitative trait loci for resistance to fusarium head blight and deoxynivalenol accumulation in Wangshuibai wheat under field conditions. Ma, H. X.,Zhang, K. M.,Gao, L.,Bai, G. H.,Chen, H. G.,Cai, Z. X.,Lu, W. Z..

[10]Phytochelatins play key roles for the difference in root arsenic accumulation of different Triticum aestivum cultivars in comparison with arsenate uptake kinetics and reduction. Shi, Gao Ling,Lou, Lai Qing,Li, Dao Jun,Hu, Zhu Bing,Cai, Qing Sheng,Shi, Gao Ling.

[11]Single-Strand Conformational Polymorphism Markers Associated with a Major QTL for Fusarium Head Blight Resistance in Wheat. Yu, G. H.,Tang, K. X.,Ma, H. X.,Bai, G. H..

作者其他论文 更多>>