您好,欢迎访问江苏省农业科学院 机构知识库!

De novo characterization of the Iris lactea var. chinensis transcriptome and an analysis of genes under cadmium or lead exposure

文献类型: 外文期刊

作者: Gu, Chun-Sun 1 ; Liu, Liang-Qin 1 ; Deng, Yan-Ming 3 ; Zhang, Yong-Xia 1 ; Wang, Zhi-Quan 1 ; Yuan, Hai-Yan 1 ; Huang, 1 ;

作者机构: 1.Inst Bot, Jiangsu Prov Platform Conservat & Utilizat Agr Ge, Nanjing 210014, Jiangsu, Peoples R China

2.Chinese Acad Sci, Nanjing 210014, Jiangsu, Peoples R China

3.Jiangsu Acad Agr Sci, Inst Leisure Agr, Nanjin

关键词: Iris lactea var. chinensis;Cadmium;Lead;Transcriptome;Quantitative real-time PCR

期刊名称:ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY ( 影响因子:6.291; 五年影响因子:6.393 )

ISSN: 0147-6513

年卷期: 2017 年 144 卷

页码:

收录情况: SCI

摘要: Iris lactea var. chinensis (I. lactea var. chinensis) is tolerant to accumulations of cadmium (Cd) and lead (Pb). In this study, the transcriptome of I. lactea var. chinensis was investigated under Cd or Pb stresses. Using the gene ontology database, 31,974 unigenes were classified into biological process, cellular component and molecular function. In total, 13,132 unigenes were involved in enriched Encyclopedia of Genes and Genomes (KEGG) metabolic pathways, and the expression levels of 5904 unigenes were significantly changed after exposure to Cd or Pb stresses. Of these, 974 were co-up-regulated and 1281 were co-down-regulated under the two stresses. The transcriptome expression profiles of I. lactea var. chinensis under Cd or Pb stresses obtained in this study provided a resource for identifying common mechanisms in the detoxification of different heavy metals. Furthermore, the identified unigenes may be used for the genetic breeding of heavy-metal tolerant plants.

  • 相关文献

[1]ROLE OF THE NON-PROTEIN THIOLS IN ACCUMULATION, TRANSLOCATION AND TOLERANCE OF LEAD IN Iris lactea var. chinensis. Yuan, Hai-Yan,Huang, Su-Zhen,Yang, Yong-Heng,Gu, Chun-Sun,Yuan, Hai-Yan,Huang, Su-Zhen,Yang, Yong-Heng,Guo, Zhi.

[2]Transcription of potassium transporter genes of KT/HAK/KUP family in peach seedlings and responses to abiotic stresses. Song, Z. -Z.,Yang, Y.,Ma, R. -J.,Xu, J. -L.,Yu, M. -L.,Song, Z. -Z.,Yang, Y.,Ma, R. -J.,Xu, J. -L.,Yu, M. -L.,Song, Z. -Z..

[3]Simultaneously determination of trace Cd2+ and Pb2+ based on L-cysteine/graphene modified glassy carbon electrode. Zhou, Wenshu,Li, Caihong,Yang, Xiaodi,Sun, Chong,Zhou, Wenshu. 2016

[4]Variation of DNA methylation patterns associated with gene expression in rice (Oryza sativa) exposed to cadmium. Feng, Sheng Jun,Liu, Xue Song,Tao, Hua,Tan, Shang Kun,Chu, Shan Shan,Zhang, Xian Duo,Yang, Zhi Min,Oono, Youko,Chen, Jian.

[5]THE GROWTH, LEAD ACCUMULATION AND OXIDATIVE STRESS RESPONSE OF Iris lactea var. chinensis UNDER LEAD STRESS. Yuan, Hai-yan,Huang, Su-zhen,Han, Yu-lin,Guo, Zhi.

[6]THE EFFECT OF PLANTING Iris lactea var. chinensis ON Pb FRACTIONATIONS AND ACTIVITIES OF ENZYMES IN ARTIFICIAL Pb CONTAMINATED SOILS. Yuan, Hai-Yan,Tong, Hai-Ying,Huang, Su-Zhen,Han, Yu-Lin,Yuan, Hai-Yan,Guo, Zhi,Gu, Ji-Guang.

[7]Genome-wide identification of the auxin response factor (ARF) gene family and expression analysis of its role associated with pistil development in Japanese apricot (Prunus mume Sieb. et Zucc). Gao, Zhihong,Huo, Ximei,Xu, Yanshuai,Shi, Ting,Ni, Zhaojun,Song, Juan,Sun, Hailong.

[8]Selection of appropriate reference genes in eggplant for quantitative gene expression studies under different experimental conditions. Zhou, Xiaohui,Liu, Jun,Zhuang, Yong.

[9]Molecular cloning and characterization of two novel DREB genes encoding dehydration-responsive element binding proteins in halophyte Suaeda salsa. Sun, Xiao-Bo,Ma, Hong-Xiang,Jia, Xin-Ping,Ye, Xiao-Qing,Chen, Yu.

[10]Overexpression of a PIP1 Gene from Salicornia bigelovii in Tobacco Plants Improves Their Drought Tolerance. Sun, Xiaobo,Deng, Yanming,Liang, Lijian,Jia, Xinping,Xiao, Zheng,Su, Jiale.

[11]Genome-wide identification and expression analysis of beta-galactosidase family members during fruit softening of peach [Prunus persica (L.) Batsch]. Guo, Shaolei,Song, Juan,Zhang, Binbin,Jiang, Hang,Ma, Ruijuan,Yu, Mingliang,Guo, Shaolei,Jiang, Hang,Guo, Shaolei,Song, Juan,Zhang, Binbin,Jiang, Hang,Ma, Ruijuan,Yu, Mingliang. 2018

[12]Molecular characterization and expression of vitellogenin gene from Spodoptera exigua exposed to cadmium stress. Zhao, Jing,Sun, Yang,Xiao, Liubin,Tan, Yongan,Bai, Lixin.

[13]Thymol Mitigates Cadmium Stress by Regulating Glutathione Levels and Reactive Oxygen Species Homeostasis in Tobacco Seedlings. Ye, Xiefeng,Ling, Tianxiao,Xue, Yanfeng,Xu, Cunfa,Zhou, Wei,Hu, Liangbin,Chen, Jian,Shi, Zhiqi,Chen, Jian,Shi, Zhiqi.

[14]Periphyton growth reduces cadmium but enhances arsenic accumulation in rice (Oryza sativa) seedlings from contaminated soil. Shi, Gao Ling,Ma, Hong Xiang,Lu, Hai Ying,Liu, Jun Zhuo,Wu, Yong Hong,Lou, Lai Qing,Tang, Xian Jin.

[15]Thymol Ameliorates Cadmium-Induced Phytotoxicity in the Root of Rice (Oryza sativa) Seedling by Decreasing Endogenous Nitric Oxide Generation. Wang, Ting-Ting,Shi, Zhi Qi,Chen, Jian,Wang, Ting-Ting,Shi, Zhi Qi,Xu, Xiao-Feng,Hu, Liang-Bin,Chen, Jian,Han, Fengxiang X.,Zhou, Li-Gang,Chen, Jian.

[16]Screening for cadmium tolerance of 21 cultivars from Italian ryegrass (Lolium multiflorum Lam) during germination. Fang, Zhigang,Hu, Zhaoyang,Zhao, Huihui,Yang, Lei,Lou, Laiqing,Cai, Qingsheng,Fang, Zhigang,Ding, Chenglong.

[17]Cinnamaldehyde Ameliorates Cadmium-Inhibited Root Elongation in Tobacco Seedlings via Decreasing Endogenous Hydrogen Sulfide Production. Ye, Xie-Feng,Ling, Tianxiao,Yu, Xiao-Na,Xue, Yanfeng,Wang, Yong,Cheng, Changxin,Feng, Guosheng,Hu, Liangbin,Shi, Zhiqi,Chen, Jian,Shi, Zhiqi,Chen, Jian.

[18]SUBCELLULAR DISTRIBUTION AND CHEMICAL FORMS OF CADMIUM IN LEAVES OF THE HYPERACCUMULATOR PLANT Solanum nigrum L.. Guo, Zhi,Ao, Yan-song,Guo, Zhi,Chen, Liu-gen,Yuan, Hai-yan,Yuan, Hai-yan.

[19]Exogenous GR24 Alleviates Cadmium Toxicity by Reducing Cadmium Uptake in Switchgrass (Panicum virgatum) Seedlings. Tai, Zhenglan,Yin, Xinqiang,Fang, Zhigang,Lou, Laiqing,Cai, Qingsheng,Fang, Zhigang,Shi, Gaoling. 2017

[20]Potential use of cotton for remediating heavy metal-polluted soils in southern China. Xiongfeng Ma,Cangsong Zheng,Wei Li,Dong, Helin,Yang, Daigang,Shaoying Ai,Zhigang Zhang,Xiaojian Zhou,Chaoyou Pang,Haodong Chen,Kehai Zhou,Mingdeng Tang,Linfeng Li,Yanhong Wang,Yichun Li,Lishuang Guo,Helin Dong,Daigang Yang. 2017

作者其他论文 更多>>