您好,欢迎访问江苏省农业科学院 机构知识库!

Bioremediation of Wastewater by Iron Oxide-Biochar Nanocomposites Loaded with Photosynthetic Bacteria

文献类型: 外文期刊

作者: He, Shiying 1 ; Zhong, Linghao 2 ; Duan, Jingjing 1 ; Feng, Yanfang 1 ; Yang, Bei 1 ; Yang, Linzhang 1 ;

作者机构: 1.Jiangsu Acad Agr Sci, Inst Agr Resources & Environm, Nanjing, Jiangsu, Peoples R China

2.Penn State Univ, Dept Chem, Mt Alto, PA USA

关键词: iron oxide nanoparticles;nanocomposites;microorganisms;biochar;nutrient removal;water treatment

期刊名称:FRONTIERS IN MICROBIOLOGY ( 影响因子:5.64; 五年影响因子:6.32 )

ISSN: 1664-302X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: It has been reported that bacteria-mediated degradation of contaminants is a practical and innocuous wastewater treatment. In addition, iron oxide nanoparticles (NP) are wastewater remediation agents with great potentials due to their strong adsorption capacity, chemical inertness and superparamagnetism. Therefore, a combination of NPs and microbes could produce a very desirable alternative to conventional wastewater treatment. For this purpose, we first prepared Fe3O4/biochar nano-composites, followed by loading photosynthetic bacteria (PSB) onto them. It was found that Fe3O4/biochar nano-composites exhibited a high adsorption capacity for PSB (5.45 x 10(9) cells/g). The efficiency of wastewater pollutants removal by this PSB/Fe3O4/biochar agent was then analyzed. Our results indicated that when loaded onto Fe3O4/biochar nano-composites, PSB's nutrient removal capability was significantly enhanced (P < 0.05). This agent removed 83.1% of chemical oxygen demand, 87.5% of NH4+, and 92.1% of PO43- from the wastewater in our study. Our experiments also demonstrated that such composites are outstanding recyclable agents. Their nutrient removal capability remained effective even after five cycles. In conclusion, we found the PSB/Fe3O4/biochar composites as a very promising material for bioremediation in the wastewater treatment.

  • 相关文献

[1]"Black is the new green": the blue shades of biochar. Rai S. Kookana,Xiang-Yang Yu,Guang-Guo Ying. 2011

[2]Differences in the treatment efficiency of a cold-resistant floating bed plant receiving two types of low-pollution wastewater. Duan, Jingjing,Feng, Yanfang,Yu, Yingliang,He, Shiying,Xue, Lihong,Yang, Linzhang,Feng, Yanfang.

[3]Fenced cultivation of water hyacinth for cyanobacterial bloom control. Qin, Hongjie,Zhang, Zhiyong,Liu, Haiqin,Wen, Xuezheng,Zhang, Yingying,Wang, Yan,Yan, Shaohua,Li, Dunhai.

[4]Efficient biosynthesis of (2S)-pinocembrin from D-glucose by integrating engineering central metabolic pathways with a pH-shift control strategy. Wu, Junjun,Zhang, Xia,Dong, Mingsheng,Zhou, Jingwen,Dong, Mingsheng.

[5]Food Nanotechnology and Nano Food Safety. Bai, Hongwu,Liu, Xianjin. 2015

[6]Effects of biochar application on Suaeda salsa growth and saline soil properties. Sun, Junna,He, Fuhong,Zhang, Zhenhua,Shao, Hongbo,Shao, Hongbo,Xu, Gang. 2016

[7]Biochar characteristics produced from rice husks and their sorption properties for the acetanilide herbicide metolachlor. Huang, Yufen,Li, Yanliang,Huang, Lianxi,Huang, Qing,Liu, Zhongzhen,Wei, Lan,Huang, Yufen,Li, Yanliang,Huang, Lianxi,Huang, Qing,Liu, Zhongzhen,Mar, Nyo Nyo.

[8]The effect of periphyton on seed germination and seedling growth of rice (Oryza sativa) in paddy area. Lu, Haiying,Liu, Junzhuo,Wu, Yonghong,Lu, Haiying,Shao, Hongbo,Kerr, Philip G..

[9]Controlled-release fertilizer, floating duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from rice paddy fields irrigated with nitrogen-rich wastewater. Sun, Haijun,Sun, Haijun,Min, Ju,Feng, Yanfang,Shi, Weiming,Zhang, Hailin,Feng, Yanfang.

[10]Temperature and moisture responses to carbon mineralization in the biochar-amended saline soil. Sun, Junna,He, Fuhong,Zhang, Zhenhua,Shao, Hongbo,Shao, Hongbo,Xu, Gang.

[11]Biochar applied at an appropriate rate can avoid increasing NH3 volatilization dramatically in rice paddy soil. Feng, Yanfang,Xue, Lihong,Gao, Qian,Yang, Linzhang,Feng, Yanfang,Sun, Haijun,Sun, Haijun,Liu, Yang,Lu, Kouping.

[12]Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and P-31 NMR analysis. Xu, Gang,Zhang, You,Shao, Hongbo,Sun, Junna,Shao, Hongbo,Sun, Junna,Zhang, You.

[13]Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Xu, Gang,Zhang, You,Sun, Junna,Shao, Hongbo,Shao, Hongbo,Sun, Junna,Zhang, You.

[14]Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation. Jin, Hongmei,Chang, Zhizhou,Xu, Yueding,Zhang, Jianying,Jin, Hongmei,Chang, Zhizhou,Xu, Yueding,Zhang, Jianying,Jin, Hongmei,Capareda, Sergio,Gao, Jun.

[15]Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Sun, Haijun,Chu, Lei,Lu, Haiying,Shao, Hongbo,Shi, Weiming.

[16]Suppression of Chlorantraniliprole Sorption on Biochar in Soil-Biochar Systems. Wang, Ting-Ting,Lu, Meng-Xiao,Liu, Xian-Jin,Yu, Xiang-Yang,Li, Yi-Song,Jiang, Alice C..

[17]Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars. Pan, Ligang,Yu, Xiangyang,Ying, Guangguo,Kookana, Rai S.,Ying, Guangguo,Pan, Ligang.

[18]Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils. Yu, Xiang-Yang,Mu, Chang-Li,Liu, Xian-Jin,Gu, Cheng,Liu, Cun.

[19]FIRST CHARACTERIZATION OF HUMIC-LIKE SUBSTANCES ISOLATED FROM MAIZE STRAW BIOCHAR. Zhang, Chang,Cai, Hongguang,Zhang, Chang,Ren, Jun,Wang, Lichun.

[20]Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic. Wang, Ning,Chang, Zhi-Zhou,Xue, Xi-Mei,Juhasz, Albert L.,Li, Hong-Bo.

作者其他论文 更多>>